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Fig. 2. Profiles of the five lava flow units sampled, showing sample locations in relation to vesicle zonation and other features. Inset: cross
section of the tilted block (tumulus) from which the profile 1 samples were collected.
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direction of the flow lobes, and the slope of the terrain
were combined to infer the overall flow direction of
each unit. We refer to this direction as the geologically
inferred flow direction. Minor segregation veins up to
5 cm thick, slightly coarser and more vesicular than the
lava they cut, occur near the median plane of each unit
and some were sampled. The segregation veins indicate
lava that remained liquid after solidification of most
parts of the unit; the bulk chemical composition of this
late liquid may be slightly more differentiated than that
of the flow as a whole (c.f. Kuno, 1965).

Cylindrical cores ( ~ 25 mm in diameter) were sam-
pled using a gasoline powered drill, and were oriented
by magnetic compass and clinometer before their
retrieval. Each sample core was subsequently sliced
into one to three specimens 25 mm long, and the AMS
of all the specimens recovered was measured in the
Paleomagnetism Laboratory at the University of
Hawaii using a Kappabridge KLY-2 instrument.

3. Results

3.1. Bulk susceptibility

Magnetic susceptibility is the property of matter that
determines its internal response to an external magnetic
field. The external field interacts with the electrons of
the material, deforming their orbits around the atomic
nuclei and forcing the spins of the electrons to lie along
the field direction if the material is para- or ferro-mag-
netic. This effect (called induced magnetization)
depends on the intensity of the field and usually pres-
ents a directional variability (Hrouda, 1982), that is,
the induced magnetization will not be the same for
different orientations of the magnetic field and, in gen-
eral, will not be parallel to the magnetic field. Mathe-
matically, it is appropriate to approximate this response
by a second order symmetric tensor, the susceptibility
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Fig. 3. Variation of bulk susceptibility within the five profiles of Xitle lavas. Total thickness of the flow used to normalize the heights shown
(except in profile 1 whose total thickness is not known) is given in the right scale of each profile.
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Table 1

(a) Average values of the degree of anisotropy of the five units
studied. The two figures listed correspond to the A parameter of
Canon-Tapia (1992) and the P’ parameter of Jelinek (1981) where
A=100 (1—(ks+ks)/2k,)) and P'= (exp{2(pi+p3i+p3)}.
pi=In(k;/k,') fori=12,3 and k,,' = geometric mean of the princi-
pal susceptibilities. (b) Average values from different types of lavas,
as indicated

(a)

Profile A(%) P

1 24 1.0018 Thick unit on moderate slope
9 1.7 1.0013 Moderate unit on shallow slope
2 1.4 1.0007 Thick unit on shallow slope
22 1.4 1.0006 Moderate unit on shallow slope
6 0.7 1.0002 Thin unit on shallow slope
Mean 1.54 1.0009
(b)
Site - A(%) P
Azufre 3.0 1.0040 8 aa flows on steep slope
XITLE 2:1 1.0013 1 aa flow on steep slope
Oahu 1.0 1.0003 3 aa flows on steep slope
OAHU 0.3 1.0000 1 pahoehoe on shallow slope
Table 2

(a) Average values of the magnetic fabric of the five units contained
in this work. The two parameters used were the B parameter of
Caiién-Tapia (1992) and the V parameter of Graham (1966) where
B=100 ((ky—2k,)/k,+ 1)) and V=sin"" {(kn—ks)/ (k;—k3)}"/
2, See text for details. (b) Average magnetic fabric of other types of
lavas as in Table 1

(a)

Profile B(%) V(°) Flow thickness (m)
2 —-1.42 64 8.2
1 -1.39 56 >5.5
9 - 112 55 4.7

22 -1.10 59 6.0
6 —-0.64 58 1.6

Mean —-1.13 58

(b)

Site B(%) V(°)

Xitle (aa) —143 59

Oahu (aa) —-041 57

Oahu (ph) —0.04 48

Azufre (aa) +1.35 42

tensor (Nye, 1960), which in the SI system is dimen-
sionless.

It is always possible to find three mutually orthogo-
nal directions in which the magnetic field and the
induced magnetization are parallel (the eigenvectors
of the susceptibility tensor) although the value of the
susceptibility along each of these directions (the eigen-
values of the tensor, denoted by k,, k, and k3) is differ-
ent; these are called principal susceptibilities and are
such that they satisfy the relationship k, > k, > k5 (Lie-
nert, 1991).

Values for the bulk susceptibility (k,,) calculated as
the mean of the three principal susceptibilities from the
Xitle lavas average about 6 X 1073, This is slightly
lower than the value obtained from lava flows of O’ahu
(~2X 1072, E. Herrero-Bervera, unpubl. data) and
from the Azufre volcano in Argentina (~2X 1072,
Caiién-Tapiaetal., 1994). Profiles 2, 1 and 22 give the
highest values (between 8 X102 and 7 X 10~?) and
profiles 9 and 6 give the lowest (between 5 X 102 and
4x107%). The difference between the largest and
smallest values is very small when compared with the
large variations ( of several orders of magnitude) found
in rocks containing very different amounts of ferro-
magnetic minerals, as for example some granites or
metamorphic rocks (Tarling and Hrouda, 1993).

Variations of k,,, within flow units are shown in Fig.
3. The peak values in the middle of profiles 9 and 2
(Figs. 3 a and b) are given by samples collected from
segregation veins. Excluding these, k,,, tends to increase
toward the upper margin from the central parts of these
units, although in a narrow zone at the top a sudden
decrease takes place. In profile 6 the reverse relation-
ship is observed.

Centeno-Garcia et al. (1986) found similar varia-
tions in the magnetic susceptibility across the bounda-
ries of superimposed flow units in the Xitle lavas,
suggesting its possible connection with the observed
degree of oxidation of the rock. Petersen (1976)
pointed out that, in general, the degree of oxidation in
thin flows will tend to be higher towards their upper
parts, while in flows exceeding 6 m thick preferential
escape of hydrogen from their central parts may pro-
duce inner zones of high oxidation. In the present case,
the observed variations of k,, are compatible with the
general picture given by Petersen (1976).
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Fig. 4. Variation of the degree of anisotropy within the five profiles of Xitle lavas. See text for details. Dashed lines = P' parameter, solid lines

= A parameter.

3.2. Degree of anisotropy

Magnetic susceptibility is said to be isotropic if the
three principal susceptibilities are equal in magnitude,
and is anisotropic in any other case. Several parameters
attempting to give a quantitative estimate of the degree
of anisotropy, that is, a number estimating the departure
of the measurements from the isotropic case, have been
proposed. We used two parameters following Cafién-
Tapia (1994). These parameters are defined in Table
1 together with average values calculated for each flow
unit.

Internal variations of the degree of anisotropy within
single units are shown in Fig. 4. Apparently, the degree
of anisotropy increases with depth in the unit, although
the differences between top and bottom are rather small
and may not be significant. Typical values of anisotropy
are between 1% and 2%, except in the middle parts of
profile 9 and the lower part of profile 1 (Figs. 4b and
e¢) where values of 5% were obtained.

When we compare the values obtained in these flows
with those from different types of lavas (Table 1b) we
find that andesite lavas from Azufre give much higher
values than those from Xitle or Ko’olau suggesting a
possible relationship with the silica content (following
MacDonald and Katsura, 1964; Gunn and Mooser,
1970; Verma and Armienta, 1985; Tormey etal., 1989)
and therefore the viscosity of the lava. General differ-
ences in flow thickness (in decreasing order Azufre-
Xitle-Ko’olau) seem consistent with this inter-
pretation.

Also, from the data in Table 1 (a and b) it would
appear that aa flows on average tend to yield higher
values of the degree of anisotropy than pahoehoe,
although further work is needed before it is possible to
draw any definitive conclusion.

3.3. Magnetic fabrics

Various parameters have been proposed to quantify
magnetic fabrics, or the shape of the susceptibility ten-
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Magnetic foliation increases to the left for both parameters.

sor. As discussed in Cafién-Tapia (1994), these para-
meters yield an estimate of the relative degree of
development of a magnetic foliation and lineation. Fol-
lowing Cafi6n-Tapia (1994), we used two parameters
to quantify, the magnetic fabrics, as defined in Table 2.
The numerical values for the cases of ‘pure magnetic
foliation’, ‘equally developed magnetic foliation and
lineation’ and ‘pure magnetic lineation’ of the V (B)
parameter are 100 ( —100), 45 (0) and O (+100),
respectively. There is no one to one equivalence in the
way in which each of these parameters ‘measures’ the
magnetic fabrics, nor is there any physical basis to
prefer one from the other (Cafién-Tapia, 1994), and
therefore it is better to use them both.

The two parameters yield equivalent results for the
two partial profiles and for profile 6, but in profiles 2
and 9 some quantitative differences are observed (Fig.
5). In profile 2, the V parameter indicates the presence
of a unique zone with a slightly higher degree of mag-

netic foliation at a height fraction of between 0.8 and
0.6, while the B parameter indicates a relatively uni-
form magnetic foliation through the whole thickness of
the unit. In profile 9 the B parameter identifies a zone
of higher foliation between 0.35 and 0.65 height frac-
tion that is not shown by the V parameter. The physical
relevance of these differences is not clear at present,
although by using the B parameter it was possible to
design a consistent criterion that allowed the size reduc-
tion of the regions of confidence around the mean sus-
ceptibilities as explained in the next section. '

On average, magnetic foliation is a little more devel-
oped in profiles 2 and 1 than in profiles 9, 22 and 6
(Table 2a, B parameter). Assuming that the exposed
section of profile 1 is less than half of the total thickness
of the flow (which is a reasonable assumption in view
of the mechanism of formation of this type of tumulus
as discussed by Walker, 1991, 1995b), the degree of
development of the magnetic foliation would be
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Fig. 6. Equal-area projection (lower hemisphere) of the directions of the principal susceptibilities measured on the five profiles. Geologically-
inferred flow direction is given by the arrows. The regions of confidence shown are those calculated with the linear approximation of Jelinek
(1978). Numbers_in parentheses allow comparison with the regions of confidence obtained with the bootstrap method of Constable and Tauxe

(1990).

directly related to the total thickness of the unit, which
may be of great importance in the study of the internal
emplacement mechanism of lava flows. For instance,
it is known from a structural study (Walker, 1995b)
that most of the Xitle flow units continued to thicken
by endogenous growth by the ‘‘lava rise’’ mechanism
of Walker (1991) after they were emplaced, and there-
fore it would follow that the thicker units are more
likely to be subject to larger degrees of internal defor-

mation or shearing. This internal deformation would
conceivably affect the development of the magnetic
foliation; the larger the amount of internal shearing, the
better developed the magnetic foliation.

Clearly, the previous assumption is valid only for
the B parameter and not for the V parameter and there-
fore, as there is yet no physical basis to prefer any one
parameter, the conclusions drawn should be taken as a
reasonable inference deserving further investigation.
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Comparison of the magnetic fabric of the pahoehoe
Xitle lavas with that of lavas from other settings (Table
2b, parameter B; data sources as in Table 1b) would
seem to indicate that larger degrees of internal defor-
mation occur, on average, in aa than in pahoehoe units
of similar composition. The average magnetic fabric of
the Azufre lavas (8 flow units), markedly defines a
magnetic lineation, which may be the consequence of
their higher viscosity as indicated in the preceding sec-
tion, for such lavas would move more like a plug pre-
senting limited internal deformation therefore

preserving a strong vesicle lineation. The data base is,
however, meagre.

3.4. Directions of the principal susceptibilities

Fig. 6 consists of lower-hemisphere equal-area plots
of the principal susceptibility axes for the five Xitle
profiles. The apparent large scatter is similar to that
found by previous studies of AMS in lava flows (Khan,
1962; Symons, 1975). By using the statistical tools
provided by Hext (1963), however, and criteria pro-
posed by Caiién-Tapiaet al. (1994; see also the Appen-
dix) to classify the size of the regions of confidence,
the groupings of the principal directions (Fig. 6) range
from moderate to very good in most cases. An excep-
tion is profile 6 where all the three principal suscepti-
bilities are poorly clustered around their mean. In the
other four profiles, the minimum susceptibilities are
much better grouped than either maximum or inter-
mediate susceptibilities, which usually define a girdle-
like arrangement around the mean minimum. The mean
direction of the minimum susceptibilities lies within
10° to 20° of the vertical. The direction of the mean
maximum susceptibility of profiles 9, 22 and 1 agrees
quite well with the geologically-inferred flow direction,
but in profiles 2 and 6 it is the mean intermediate
instead. In the former cases (Figs. 7b, 7d and 7¢), most
of the maximum susceptibility axes are contained
within +22.5° of the flow direction, and have an
upflow plunge in the basal parts of the unit. In profiles
2 and 6, on the contrary, all the three principal suscep-
tibilities are within 22.5° of the flow direction (Figs.
7a and 7¢) almost irrespective of the position of the
sample in the unit, although in profile 2 (Fig. 7a) four
distinctive groupings of samples can be identified (see
discussion below).

The plunge of the principal susceptibilities in profile
6 (Fig. 7c) seems to be rather random, whereas on
profile 2 (Fig. 7a) an upflow plunge is clear in the
upper parts of that flow-unit.

4. Discussion

4.1. AMS and flow direction

AMS measurements have proved to be reliable indi-
cators of flow directions in pyroclastic flows (e.g., Ell-
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of flow as widening and thickening occur.

wood, 1982; Knight et al., 1986) and dikes (e.g.,
Knight and Walker, 1988; Ernst and Baragar, 1992;
Staudigel et al., 1992, Puranen et al., 1992) but some
doubt has existed about their utility in lava flows. For
example, Symons (1975) could not find any significant
relationship between the geologically inferred flow
direction of the Aiyansh flow and the mean direction
of the principal susceptibilities. This may be because
samples were collected only from the surface of the
flow where rotation of blocks during emplacement may
occur, or cooling effects could modify to some extent
the original directions of AMS. Moreover, the statisti-
cal methods available at that time to calculate the mean
directions of the principal susceptibilities were largely
inappropriate.

More positive results were obtained by Khan
(1962), who found that the mean intermediate suscep-
tibility was roughly parallel to the flow direction of lava
flows although the scatter of the main susceptibilities
was large, and by Kolofikova (1976; reported by
Hrouda, 1982) who found a good agreement between
the direction of the maximum axis of susceptibility and
the flow direction, but only in the intermediate and not
in the frontal parts of the flow. MacDonald etal. ( 1992)
also found a parallelism between the principal maxi-

mum susceptibility and lineations assumed to be pro-
duced by laminar flow of lava.

In the case of the Xitle lavas, we found that either
the mean maximum or the mean intermediate suscep-
tibilities point in the same direction as the geologically-
inferred flow direction. These apparently contradictory
results can be reconciled, however, by considering the
way lava flows move.

The dimensions, especially the width and thickness,
of lava flows are strongly controlled by the rheological
properties and the slope of the preexisting terrain (e.g.,
Gauthier, 1973; Hulme, 1974; Baloga and Pieri, 1986;
Naranjo et al., 1992). Assuming constant rheological
properties along a flow, a decrease in slope results in
both a widening and a thickening of the lava, to reach
the new equilibrium configuration. In widening, the
lava will thus be forced to change its direction of move-
ment locally except, perhaps, close to the axis of the
flow, as schematically shown in Fig. 8. Thus, in those
regions away from the flow axis, the local flow direc-
tion may be nearly perpendicular to the direction of
advance of the front of the lava lobe. Moreover, small
variations in direction and amount of the groundslope,
as well as the resistance that may be encountered by
the flow at the front of the lobe due to the formation of
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Fig. 9. Equal-area projection of the directions of the principal susceptibilities of selected samples of the five units. Symbols as in Fig. 6.

a rigid crust or the accumulation of debris, may cause
subsidiary lobes to form in directions at an angle of up
to 90° with the main lobe.

In our case, the present day slope of the terrain in the
locations of profiles 9, 1 and 22, where the mean max-
imum susceptibility and the geological information
were in agreement, is steeper ( ~4°) than that of pro-
files 2 and 6 ( <1°). The first three units form rather
narrow lobes, and this can be interpreted as resulting
from flow down a moderate paleoslope. Also, profile 9
unit rests on a paleosol, which eliminates the possible
effects of the underlying flows on the topography.

We conclude that the mean maximum susceptibility
points in the direction of the local movement in every

case; the local movement coincides with the direction
of advance of the unit as a whole only in the cases
where the slope is steeper.

4.2. Internal variation within single units

As described above, the axes of minimum suscepti-
bility are usually better clustered than the other two
principal susceptibilities. The degree of clustering of
the maximum susceptibilities was improved, however,
by filtering out selected specimens from the profile.
The criteria that proved to be the most useful to reduce
the confidence regions around the mean maximum sus-
ceptibility were 1) to eliminate specimens having a
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degree of anisotropy lower than an arbitrary threshold
value (different for each unit) and 2) to take out from
the calculations those specimens with a particularly
large degree of foliation. These criteria resulted in the
removal of 25%—-58% of the specimens in each profile.
The remaining specimens yield the distributions shown
in Fig. 9. The regions of confidence around the mean
maximum and intermediate susceptibilities were most
clearly reduced after filtering on profiles 9, 22, and 1
(compare Figs. 6b, 6d, and 6e with 9b, 9d and 9e).

Groups of specimens at very specific positions
within the flow units defining well clustered axes of
maximum susceptibility were delineated through filter-
ing. For example, in profile 6 specimens from the upper
and lower parts of the unit define two clusters that
reflect a 15°=20° imbrication in opposite directions of
k,; the effects of a rotation around an axis trending in
a NW-=SE direction are also indicated by these two
clusters, and seem to be responsible for the large dimen-
sions of the regions of confidence around the mean
values. The opposite imbrication of the k, axis of spec-
imens from the upper and lower parts of the unit is most
clearly observed in profile 9. Additionally, in unit 9 a
third group of specimens, in which the directions of
maximum susceptibilities are nearly normal to these
found near the top and bottom, is defined by specimens
from its central parts, namely those showing the higher
degrees of development of the magnetic foliation as
indicated in a previous section.

In the profile of unit 2, three groups of specimens,
roughly corresponding to the upper, middle and basal
parts of the unit, were identified. The k, directions in
the upper and lower parts of the unit do not show the
imbrication relationship found in the other two com-
plete profiles, although this could be due to the high
vesicularity observed in the upper section. All of the
specimens from the upper part of this unit have the k3
axis parallel to the geologically inferred flow direction.
It is not clear why this should occur, although possible
explanations may include 1) the exclusive presence of
single domain magnetite in this region of the flow lead-
ing to an inverse magnetic fabric (Rochette, 1988),2)
distortion of the flow patterns due to turbulence or to
the effect of rising bubbles, 3) deviation of flow direc-
tion in late-injected lava from the original flow direc-
tion during endogenous growth and, 4) the rotation of
a rigid crustal block of lava during movement of the
flow. The last possibility was suggested by the resem-

blance of the distribution of the AMS measurements of
this group (Fig. 9b) to the results for profile 1 before
introducing the structural correction (not shown).
Detailed study of other magnetic properties is needed
to validate the first possibility, while the other three are
more difficult to evaluate.

Yet a fourth group of only four specimens located
between the upper and middle parts of the flow can be
identified in this unit. These specimens have a better
degree of definition of the magnetic foliation than the
rest of the specimens from the unit. For this reason,
they are not included in Fig. 9a, although their &, direc-
tions are nearly parallel to the geologically inferred
flow direction. Usually, a better development of a mag-
netic foliation may be associated with a stronger influ-
ence of shearing stresses of some sort, and therefore
the presence of this fourth group of specimens may be
indicating the location of a region within the unit in
which internal shearing was stronger during emplace-
ment. The possible rotation of the upper block of the
unit is compatible with this interpretation.

5. Summary

Our main conclusions are:

(1) It is possible to infer the flow direction of lava
flows from AMS measurements. ) .

(2) An imbrication of the maximum axis of suscep-
tibility in opposed directions at top and bottom may be
observed very clearly in some profiles, which may con-
strain the azimuth of motion of lava flows, although
certainly some complications may distort this behavior.

(3) Among the possible complications that may
exist in the interpretation of AMS measurements the
most important are: (a) the principal maximum sus-
ceptibility is more likely to be directed parallel to the
direction of the local movement, which may be differ-
ent from the direction of advance of a lava flow; (b)
the presence of large vesicles and the possibility of
significant crustal rotations may disturb the AMS ini-
tially related with the flow of lava; and (¢) in very thick
units it may be possible to obtain different directions
of movement from different parts of the unit, especially
from its central parts, which may be reflecting a change
in the direction of movement of lava with time. In
particular, the endogenous growth of lava flow units,
by continued injection of lava under a surface crust,
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and jacking up of that crust, may produce significant
deviations from the initial flow direction. Xitle flow
units show particularly clear evidence for this type of
endogenous growth.

(4) In order to obtain significant results from lava
flows, it seems necessary to collect as many samples as
possible from the same unit and these should be uni-
formly distributed along a vertical profile that must
include the base of the unit, especially in the case of
thick lava flows. It also may be necessary to filter the
resulting measurements.

Finally, relationships suggested by this study that
require further research include:

(1) The degree of anisotropy is directly related to
either the viscosity of the lava, the morphology of the
flow, or both, and

(2) The magnetic fabric indicated by the suscepti-
bility ellipsoid is directly related to the state of internal
deformation suffered by lava flows during movement.

Clearly, should this relationships be confirmed,
AMS would offer a unique opportunity to study the
details of the formation of flow fields.

Acknowledgements

We thank E.A. Parfitt and L. Wilson for their com-
ments and suggestions that improved the present study.
Financial support to E. Canén-Tapia was provided par-
tially by a scholarship from DGAPA-UNAM followed
by support from CONACYyT. Field work on the Xitle
lava by Walker was funded as part of DGAPA project
IN-103589, and travel to Mexico by the Jaggar Bequest
Fund of the University of Hawaii. This is SOEST Con-
tribution Number 3868.

Appendix 1

Currently, two main methods are available to charac-
terize the statistical variability of AMS data. Jelinek
(1978), used the statistics of the second order tensor
(Hext, 1963), to propose a multivariate analysis tech-
nique in which the uncertainties in the determination
of the mean tensor are assumed to be sufficiently small
to allow their effects to be linearly superimposed. The
second approach, proposed by Constable and Tauxe
(1990), uses a bootstrap method to estimate the vari-

ability in the distribution of AMS measurements in
which the uncertainties can not be assumed to be small.
Both methods yield elliptical regions of confidence for
each of the three principal susceptibilities, although
their interpretation is slightly different. The regions of
confidence obtained with the multivariate analysis
technique delimit the area in which 95% of the most
probable means are included, while those calculated by
the resampling method indicate the area necessary to
include 95% of all the observations. Clearly, a popu-
lation of well clustered susceptibility axes will yield
small regions of confidence irrespective of which
method is used, but apparently scattered data ( therefore
having a large region of confidence according to the
resampling method) may still yield statistically signif-
icant mean directions ( with small regions of confidence
from the multivariate method).

During the study of the AMS of Xitle lavas, we used
both methods to calculate the regions of confidence
around the mean susceptibilities and it was found that,
in general, when all the specimens from a single unit
were included in the calculation of the mean, the linear
perturbation analysis produced smaller regions of con-
fidence than the bootstrap method. However, after fil-
tering out some specimens, the regions of confidence
calculated with the resampling method became slightly
smaller than those calculated using the linear approxi-
mation technique. This was especially clear in the case
of very small populations. Similar results where found
during the study of AMS of the Azufre volcano lavas
(Caién-Tapia et al., 1994).

The practical consequences of this are important
because in populations showing an apparent large scat-
ter it is very difficult to identify specific specimens that
may be considered outliers (for example those speci-
mens inadvertently collected near vesicles that may
have distorted the flow direction very locally), and a
limited number of such specimens may result in an
apparently poor grouping of directions of susceptibility
(and therefore a non-significant mean direction) if the
regions of confidence are calculated solely by using the
bootstrap method.

We suggest that both statistical methods should be
used in combination whenever possible. The linear per-
turbation analysis seems to be more robust than the
resampling method, provided the number of samples
used is not very small, and it is, therefore, more advan-
tageous to use it when the sample population is large




Edgardo Carion-Tapia et al. / Journal of Volcanology and Geothermal Research 65 (1995) 249-263 261

and jacking up of that crust, may produce significant
deviations from the initial flow direction. Xitle flow
units show particularly clear evidence for this type of
endogenous growth.

(4) In order to obtain significant results from lava
flows, it seems necessary to collect as many samples as
possible from the same unit and these should be uni-
formly distributed along a vertical profile that must
include the base of the unit, especially in the case of
thick lava flows. It also may be necessary to filter the
resulting measurements.

Finally, relationships suggested by this study that
require further research include:

(1) The degree of anisotropy is directly related to
either the viscosity of the lava, the morphology of the
flow, or both, and

(2) The magnetic fabric indicated by the suscepti-
bility ellipsoid is directly related to the state of internal
deformation suffered by lava flows during movement.

Clearly, should this relationships be confirmed,
AMS would offer a unique opportunity to study the
details of the formation of flow fields.

Acknowledgements

We thank E.A. Parfitt and L. Wilson for their com-
ments and suggestions that improved the present study.
Financial support to E. Canén-Tapia was provided par-
tially by a scholarship from DGAPA-UNAM followed
by support from CONACYyT. Field work on the Xitle
lava by Walker was funded as part of DGAPA project
IN-103589, and travel to Mexico by the Jaggar Bequest
Fund of the University of Hawaii. This is SOEST Con-
tribution Number 3868.

Appendix 1

Currently, two main methods are available to charac-
terize the statistical variability of AMS data. Jelinek
(1978), used the statistics of the second order tensor
(Hext, 1963), to propose a multivariate analysis tech-
nique in which the uncertainties in the determination
of the mean tensor are assumed to be sufficiently small
to allow their effects to be linearly superimposed. The
second approach, proposed by Constable and Tauxe
(1990), uses a bootstrap method to estimate the vari-

ability in the distribution of AMS measurements in
which the uncertainties can not be assumed to be small.
Both methods yield elliptical regions of confidence for
each of the three principal susceptibilities, although
their interpretation is slightly different. The regions of
confidence obtained with the multivariate analysis
technique delimit the area in which 95% of the most
probable means are included, while those calculated by
the resampling method indicate the area necessary to
include 95% of all the observations. Clearly, a popu-
lation of well clustered susceptibility axes will yield
small regions of confidence irrespective of which
method is used, but apparently scattered data ( therefore
having a large region of confidence according to the
resampling method) may still yield statistically signif-
icant mean directions ( with small regions of confidence
from the multivariate method).

During the study of the AMS of Xitle lavas, we used
both methods to calculate the regions of confidence
around the mean susceptibilities and it was found that,
in general, when all the specimens from a single unit
were included in the calculation of the mean, the linear
perturbation analysis produced smaller regions of con-
fidence than the bootstrap method. However, after fil-
tering out some specimens, the regions of confidence
calculated with the resampling method became slightly
smaller than those calculated using the linear approxi-
mation technique. This was especially clear in the case
of very small populations. Similar results where found
during the study of AMS of the Azufre volcano lavas
(Caién-Tapia et al., 1994).

The practical consequences of this are important
because in populations showing an apparent large scat-
ter it is very difficult to identify specific specimens that
may be considered outliers (for example those speci-
mens inadvertently collected near vesicles that may
have distorted the flow direction very locally), and a
limited number of such specimens may result in an
apparently poor grouping of directions of susceptibility
(and therefore a non-significant mean direction) if the
regions of confidence are calculated solely by using the
bootstrap method.

We suggest that both statistical methods should be
used in combination whenever possible. The linear per-
turbation analysis seems to be more robust than the
resampling method, provided the number of samples
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and apparently scattered and consequently, outliers can
not be easily identified. After removal of outliers, and
whenever the number of samples used is very small,
the resampling method seems to yield the most accurate
regions of confidence.

The size of these regions of confidence can be easily
quantified (Cafién-Tapia et al., 1994) by calculating
their ‘area’ given by the product sin(a;) -sin(a,)
where a, and a, are the angles of the ellipses of confi-
dence. Depending on this product, the grouping of the
axes (or the significance of the mean, depending on the
method used as explained above) will then be consid-
ered to be excellent ( <0.03), very good ( <0.07),
good ( <0.12), moderate ( <0.18), fair ( <0.25) or
poor (>0.25).
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