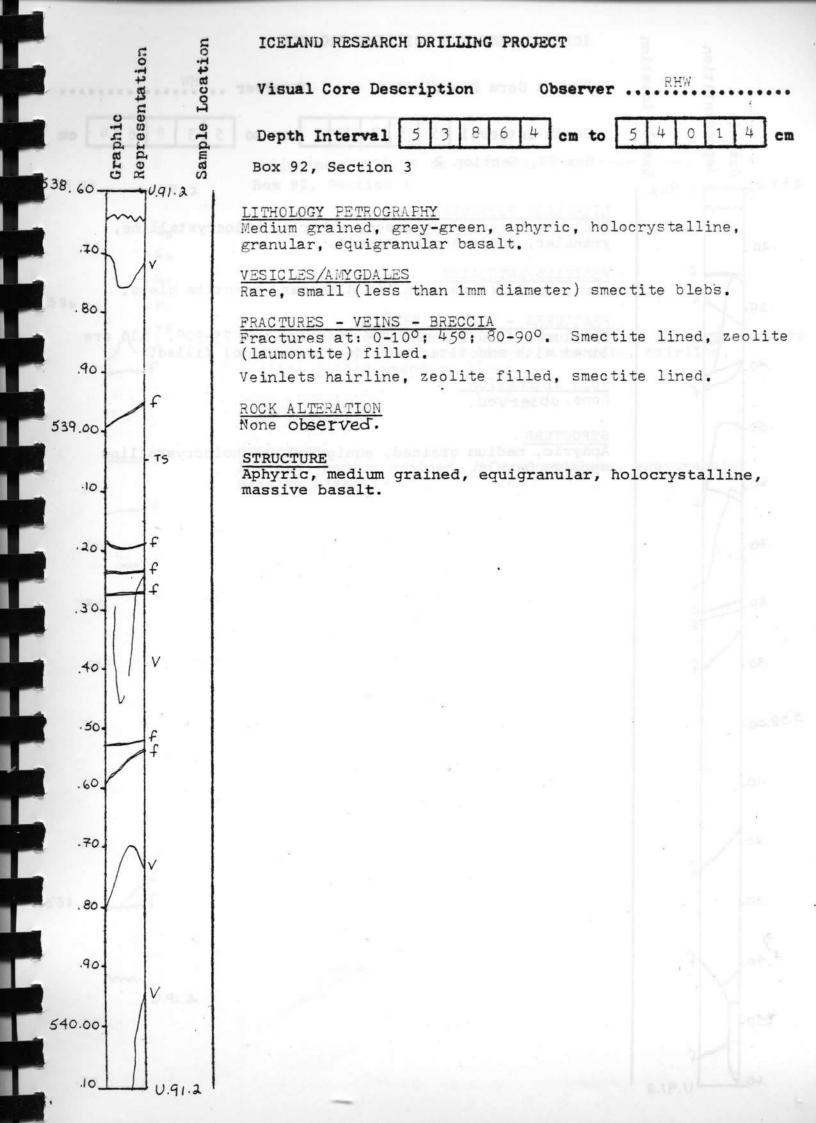
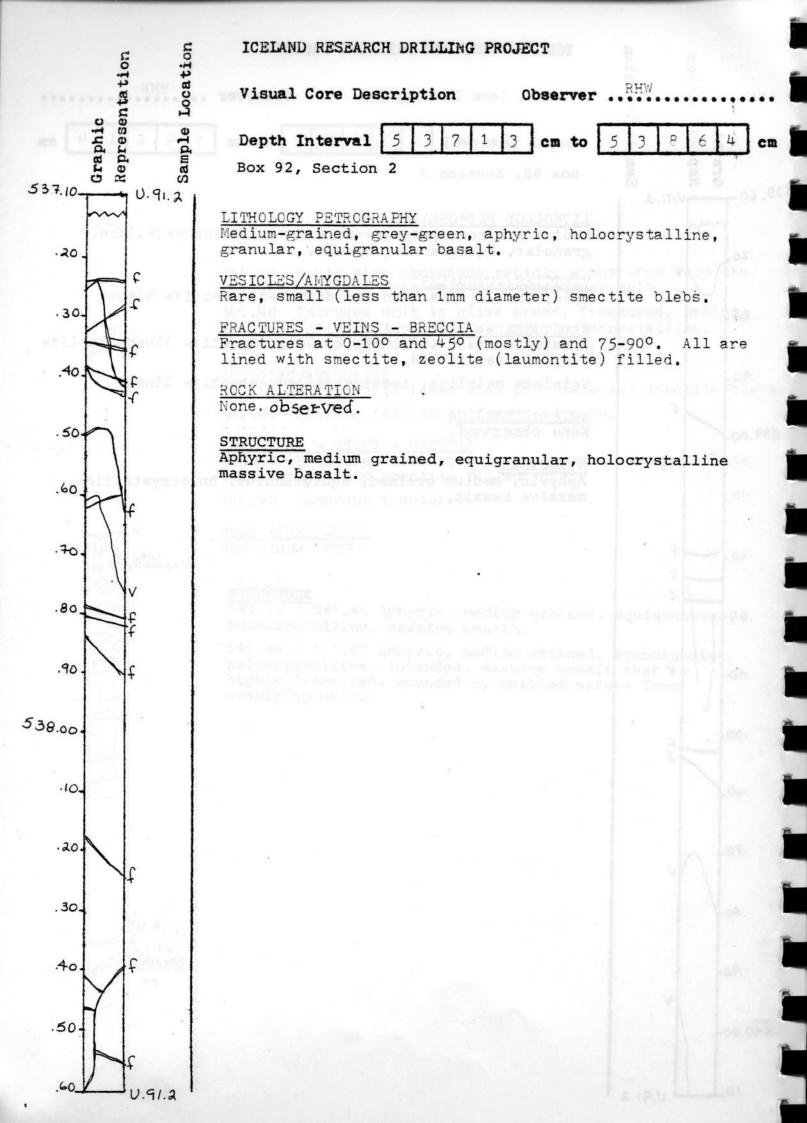
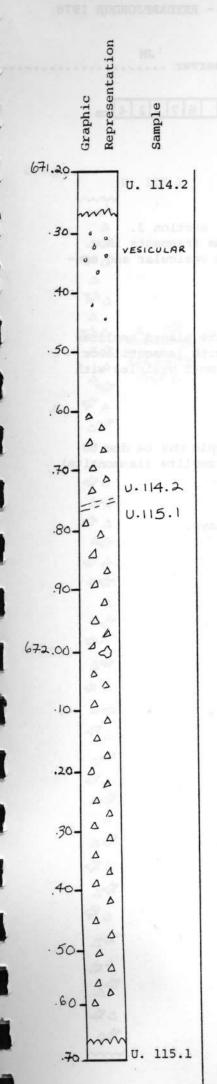


ICELAND RESEARCH DRILLING PROJECT Location Representation Visual Core Description Observer Graphic Depth Interval Box 93, Section 4 545.90. U.92.1 LITHOLOGY PETROGRAPHY Unit 92.1 continued as in 544.50 to 545.90. 546.00 546.95 - 547.05 has 11 fractures with average angle of FRACTURED PIECES VESICLES/AMYGDALES .10 None observed. FRACTURES - VEINS - BRECCIA 546.00 - 546.40 Fractural pieces have intensive black and .20 green smectite alteration. ROCK ALTERATION . 30 None observed. STRUCTURE Aphyric, coarse grained, nonvesicular basalt. .40. f 465° .50 TS 60 G, G1 G3 .70 PI .80. £ 445° 90 547.00 f +25° .10 P4 .20 .30 U.92.1







Zeolite

ICELAND RESEARCH DRILLING PROJECT Sample Location Representation Observer ..RHW. Visual Core Description Graphic Depth Interval Adjustment 536.30 to .40 is greater than 10cm. 535.80. Box 92, Section 1 0.91.2 LITHOLOGY PETROGRAPHY Medium grained, grey-green, aphyric, holocrystalline, G3 granular, equigranular basalt. .90 92 VESICLES/AMYGDALES GI Rare, small (less than 1mm diameter) smectite blebs. 536.00. PI FRACTURES - VEINS - BRECCIA Fractures at 0-10° and at 45°, one at 80°. All are smectite TS and zeolite (laumontite) lined. One vein, hairline, .10 zeolite filled smectite lined. ROCK ALTERATION None observed. .20 STRUCTURE f Aphyric, medium grained, holocrystalline, equigranular massive basalt. .30. .40. . 50. .60 .70 .80 90. 537.00 .10 U.91.2 . 20. .30

Observer ...JM.....

Depth Interval 6 7 1 2 6 cm to 6 7 2 6

Box 115 , Section 3

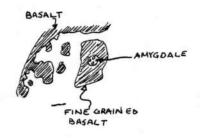
LITHOLOGY-PETROGRAPHY

- 671.30 Fine-grained, light gray basalt 5% vesicles.
- 671.60 Transition to coarse-grained breccia with white zeolites and fragments of basalt within zeolite masses. Coarse fragments both fine-grained and vesiculed.
- 671.70 Medium grained glassy tuff, with (?) flattened glass shards at the top of basaltic breccia.
- 671.90 Unit 115.1, scoriaceous flow top breccia.
- 672.60 Transition to fine grain massive basalt.

VESICLES/AMYGDALES

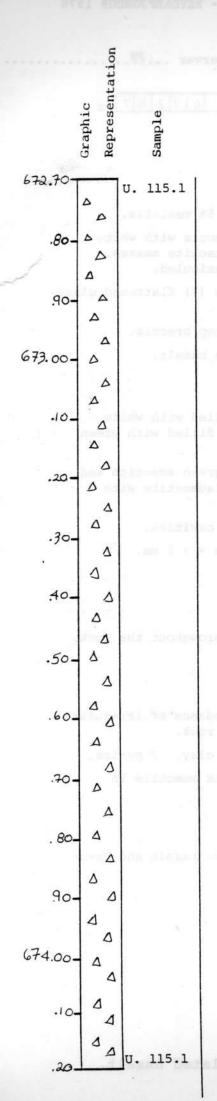
- 671.30 Irregular vein like vesicles filled with white zeolites, regular elongated vesicles are filled with green smectite.
- 671.80 Vesicles filled with black and green smectite and white laumontite. Larger cavities have laumontite with more green smectite in smaller cavities.
- 672.00 Vesicles 3 cm laumontite filled cavities.
- 672.10 Vesicles range in size from 4 cm > 1 mm.

FRACTURES - VEINS - BRECCIA


- 671.30 Fresh irregular fractures.
- 672.10 Irregular fractures and veins throughout the rock, filled with both zeolites and smectite.

ROCK ALTERATION

- 671.30 Swelling clays based on the abundance of irregular hair like fresh fractures throughout the rock.
- 671.80 Glass altering to reddish brown clay. ? pyrite.
- 672.10 Swelling clay and green and black smectite in groundmass.


OTHER

671.40 Sketch of contact between massive basalt and brecciated basalt.

STRUCTURE

671.26 - 671.60 Massive , vesiculated basalt.

Observer

Depth Interval 6 7 2 6 7 cm to 6 7 4 2 4 cm Box 115, Section 4.

LITHOLOGY-PETROGRAPHY

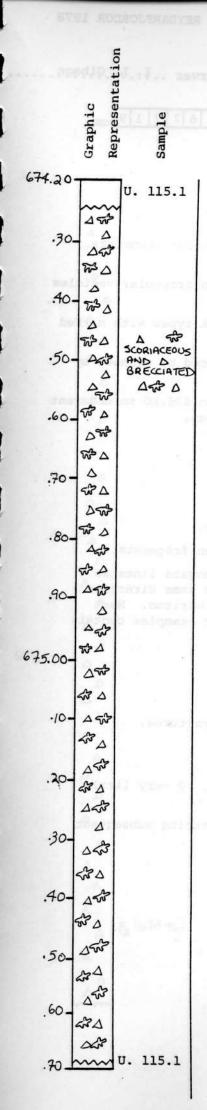
Continuation of unit 115.1 from box 115, section 3.

Gray - coarse breccia, with 5 cm - > 1 mm fragments in a fine-grained to glassy groundmass. Both vesicular and non-vesicular basalt fragments present.

VESICLES/AMYGDALES

Large irregular cavities filled with white bladed zeolites (laumontite). Smaller vesicles filled with laumontite or chlorite, chlorite forms on the rims of most vesicles with laumontite filling cavities.

FRACTURES - VEINS - BRECCIA


Irregular fresh fractures throughout sample may be due to swelling clays, fractures filling white zeolite (laumontite).

ROCK ALTERATION

Groundmass altered to brown and green clays.

STRUCTURE

Unit 155.1 brecciated.

Observer Gibson

Depth Interval 6 7 4 2 4 cm to 6 7 5 6 9 cm

Box 116, Section 1.

LITHOLOGY-PETROGRAPHY

Coarse heterogeneous flow breccia composed of angular fragments of scoriaceous basalt of varying types. Many fragments exceed 2 cm in maximum diameter and a few exceed the diameter of core. Large amounts white 'zeolite' filling angular spaces between fragments.

674.80 Many very fine grained amygdaloidal fragments.

675.63 ? Some pyroclastitic material incorporated into flow breccia.

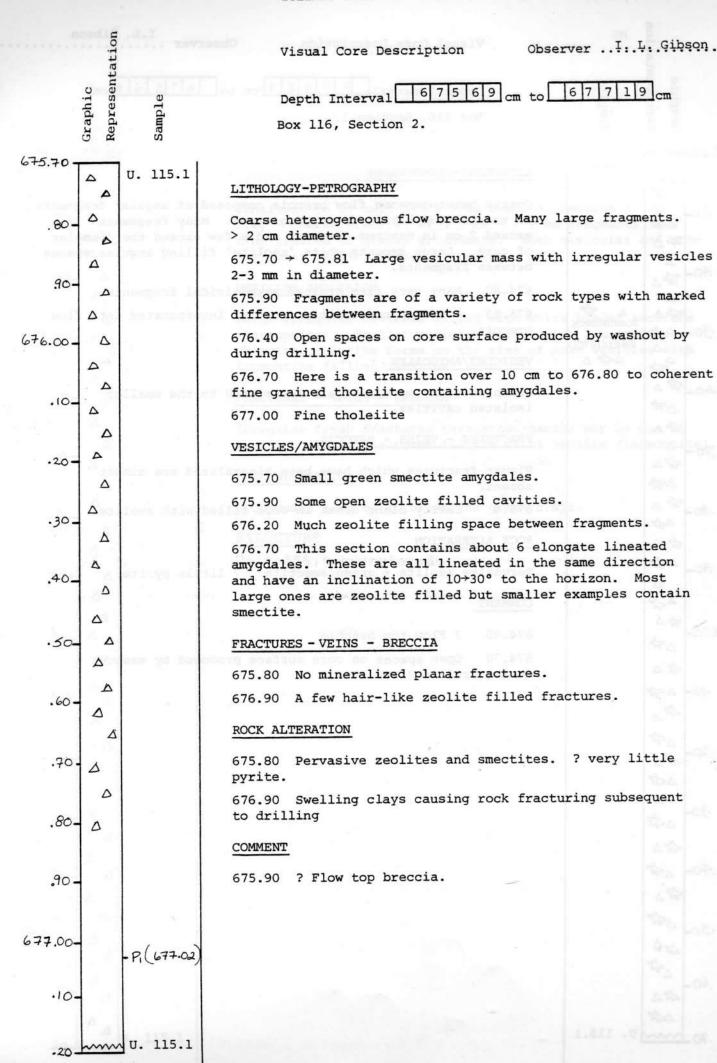
VESICLES/AMYGDALES

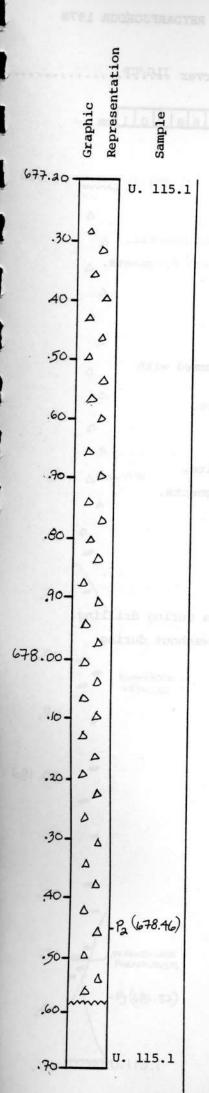
Green smectite amygdales are restricted to the smaller isolated cavities.

FRACTURES - VEINS - BRECCIA

Planar fractures which have been mineralized are almost absent.

675.4 Cavity along break in core filled with zeolite.


ROCK ALTERATION


Pervasive zeolite + green smectite. ? little pyrite.

COMMENT

674.40 ? Flow top breccia

674.70 Open spaces on core surface produced by washout during drilling?

Observer . I. L. Gibson

Depth Interval 67719 cm to 67858 cm Box 116, Section 3.

LITHOLOGY PETROGRAPHY

Transition over about 10 cms from fine tholeiite into flow breccia.

677.70 Heterogeneous breccia. Fragments > 2 cm. diameter.

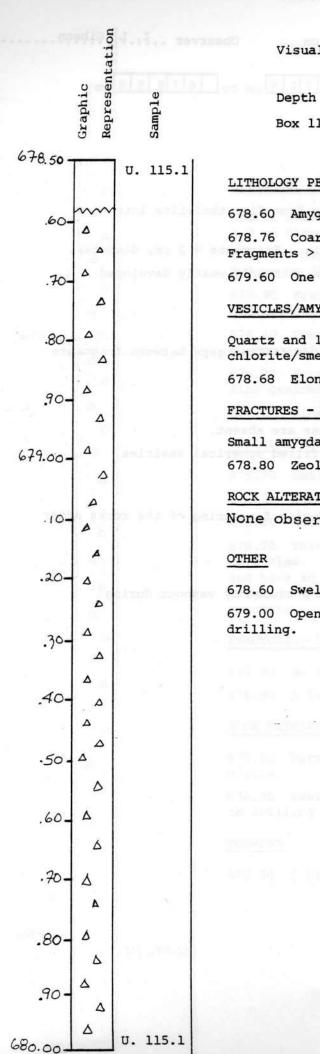
678.20 More uniform section with only weakly developed heterogeneiities.

VESICLES/AMYGDALES

677.49 Large patch of zeolite filling gaps between fragments in breccia.

FRACTURES - VEINS - BRECCIA

Mineralized planar structures are absent.


678.50 Some large zeolite filled spherical vesicles.

ROCK ALTERATION

677.70 Swelling clays producing fracturing of the rocks after drilling

OTHER

678.30 Open spaces on core produced by washout during drilling.

Observer ILG/CP.

6 7 8 5 8 Depth Interval Box 116, Section 4.

LITHOLOGY PETROGRAPHY

678.60 Amygdale tholeiite (Block ?) set in breccia.

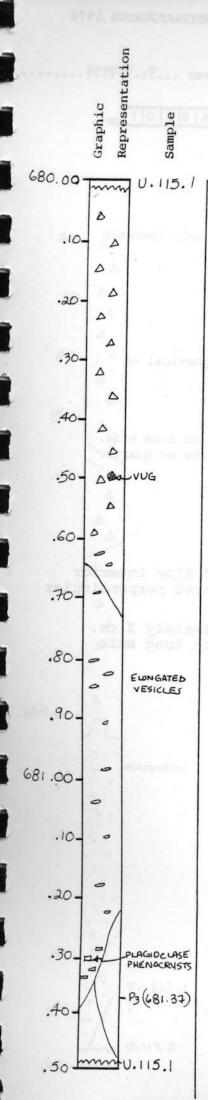
678.76 Coarse breccia. Heterogeneous-mixed fragments. Fragments > 2 cm diameter.

679.60 One fragment type.

VESICLES/AMYGDALES

Quartz and laumontite filled vesicles, rimmed with chlorite/smectite

678.68 Elongated vesicles ∿ 80° from core.


FRACTURES - VEINS - BRECCIA

Small amygdales have only chlorite/smectite. 678.80 Zeolite filling gaps between fragments.

ROCK ALTERATION

None observed.

Swelling clays produced fractures during drilling. 679.00 Open spaces on core produced by washout during

Observer .. N. Gruyer ..

Depth Interval 68001 cm to 68149 cm Box 117, Section 1

LITHOLOGY PETROGRAPHY

Gray-green fine grained aphyric tholeitic flow unit.

To 680.60 brecciated.

680.60 to 681.20, large (to 2 cm) elongated amydales in flow)

681.20 Begins massive portion of flow

681.30 Plagioclase phenocrysts, 3-4 mm long.

VESICLES/AMYGDALES

680.60-681.20 Large (2 cm elongated amydales filled with white zeolite (laum.) ± green smectite.

680.51 1/2 cm diameter spherical vug filled with euhedral laumontite.

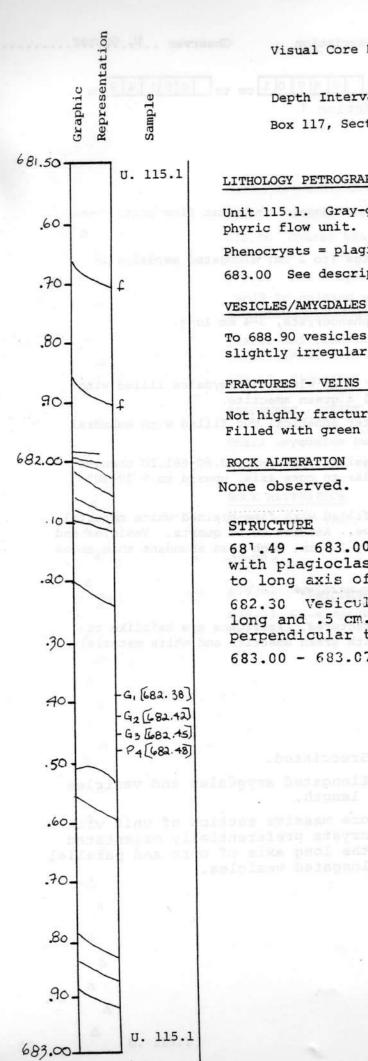
Angle of elongated vesicles between 680.60-681.20 changes from near perpendicular to core axis, upward to \sim 20-30° to core axis.

680.82 3 cm vug is filled with fine grained white material. It is hard and massive. Assumed to be quartz. Vesicles and amydales are primarily 2-3 mm, much less abundant than above section (1-2% of rock).

FRACTURES - VEINS - BRECCIA

Rock is not highly fractured. Fractures are hairlike to 1 mm wide. Filled with green smectite and white material.

ROCK ALTERATION


None observed.

STRUCTURE

680.01 - 680.60 Brecciated.

680.60 - 681.49 Elongated amygdales and vesicles of up to 2 cm. in length.

681.20 - 681.49 More massive section of unit with plagioclase phenocrysts preferentially orientated perpendicular to the long axis of core and parallel to long axis of elongated vesicles.

Observer ... N. Gruver

Depth Interval 68149 cm to 68307

Box 117, Section 2.

LITHOLOGY PETROGRAPHY

Unit 115.1. Gray-green fine-grained, extremely sparsely phyric flow unit.

Phenocrysts = plagioclase. 1-2 mm long.

683.00 See description next page.

To 688.90 vesicles are tiny (< 1 mm) and spherical or slightly irregular.

FRACTURES - VEINS - BRECCIA

Not highly fractured - fractures hair like to 1 mm wide. Filled with green smectite and white zeolites or quartz.

681.49 - 683.00 Massive portion of flow interior with plagioclase phenocrysts elongated perpendicular to long axis of core.

682.30 Vesicular inclusion approximately 2 cm. long and .5 cm. wide, flattened with long axis perpendicular to core axis.

683.00 - 683.07 Brecciated.

Graphic Sample 683.10 U. 117.1 .20. D 0 .30. D Δ 0 40 Δ D 0 .50 A 1 .60 Δ .70 Δ D .80. 4 0 D .90. 0 284.00 PORPHYRITIC .10 .20. .30. .40. VESICULAR U. 117.1 U. 117.2 .50. U-117.2

Visual Core Description

N. Gruver

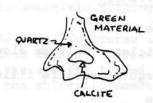
Depth Interval 68307 cm to 68457 cm

Box 117, Section 3.

LITHOLOGY PETROGRAPHY

682.95 is defined as the contact between the upper flow unit (115.1). Contact occurs over $^{\circ}$ 4 cm interval and is marked by a transition from a zone of elongated amydaloidal basalt to basalt breccia which is taken as the flow top of 116.1.

683.60 Upper portion of unit is basaltic breccia.


684.25 Plagioclase porphyritic basalt. Phenocrysts are 2-5 cm long and abundant. ∿ 5% of rock green-gray.

684.48 U.117.2 Contact described on next page. Aphyric fine-grained.

VESICLES/AMYGDALES

In brecciated portion vesicles are 3-7 mm diameter, irregular, filled with zoned layers of green smectite? Quartz, and calcite.

683.80

684.25 In plagioclase porphyry vesicles and 2-4 mm long, elongated, filled with green smectite and white zeolite. Vesicles \sim 5%.

FRACTURES - VEINS - BRECCIA

Spaces between brecciated clasts are filled with green smectite, quartz and calcite, zoned as per vesicles.

683.40 - 684.10 Few fractures hair like, filled calcite.

684.10 Rare, hair like fractures, filled with white minerals.

ROCK ALTERATION

Green Smectite, quartz, calcite.

684.40 White zeolite, green smectite

OTHER

Note this units top was labled 116.1 in log, but changed to 117.1 by J.M. Check core for correct numbering.

STRUCTUFE

683.07 - 684.45 Brecciated. Base of unit is vesicular.

684.45 - 684.57 Massive basalt.

Representation Visual Core Description Observer .N. Gruver 6 8 4 5 7 cm to 6 8 6 1 9 cm Depth Interval Box 117, Section 4. 684.60. U. 117.2 LITHOLOGY PETROGRAPHY HILLED MARGIN Coarse grained section described above. .70. 684.75 Contact-sharp, planar core. Contact ∿ 20°. 684.80 Aphyric fine grained unit (117.2) is chilled .80against 117.1 685.10 Contact is same as described below 685.35 Porphyritic, amydaloidal green gray basalt 90. ∿ 5-10% phenocrysts.Unit is similar to porphyritic portion of 117.1 685.60 Aphyric, fine grained green-gray unit. Contact is planar, core angle contact = 20-30° interpreted to be 685.00. intrusive contact. Material from unit 117.4 has filled some of the vesicles of 117.3 near the contact. .10 . VESICLES/AMYGDALES 685.10 None 685.25 Vesicles = 3-10 mm elongated. .20. CHILLED MARGIN 685.40 Irregular vesicle filled with quartz. 117.2 685.00 None U. 117.3 .30. FRACTURES - VEINS - BRECCIA PORPHYRITIC Rare, hair like veinlets, filled with calcite. 40. 684.80 Fractures rare, < 1% of rock. 685.60 Hairlike to 2 mm wide fractures filled with calcite, U.117.3 reolite and green smectite. 2 mm wide veins are irregular. .50. MARGIN Fractures = rare < 1% of rocks. U. 117.4 ROCK ALTERATION .60-Rocks altering to green smectite. 685.60 Rocks altered to green smectite. .70. STRUCTURE Unit 1]7.3 bounded by chilled margins. .80. .90. 686.00. .10

U.117.A

Representation Sample 686.20-U. 117.4 .30-40 .50-.60. .70. Vc .80 .90. P2[686.96] 687.00-٧۷ .10 VQ .30 VQ 40 U. 117.4 .50 ٧۷ .60. .70

Visual Core Description Observer JRD.

Depth Interval 68619 cm to 68770 cm

Box 118, Section 1

LITHOLOGY-PETROGRAPHY

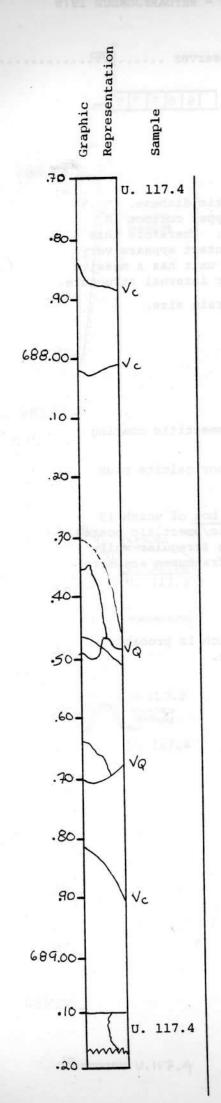
Fine grained, light gray, aphyric basaltic diabase. \sim .5% pyrite disseminated throughout rock. Upper contact in Box 117, Section 4 is clearly intrusive. Therefore this unit is unquestionably a dike as the contact appears very steep (core < \sim 5° but variable). This unit has a massive character with very little fracturing or internal structure.

686.70 - 687.30. Gradual increase in grain size.

VESICLES/AMYGDALES

None from 686.20 to 686.80.

FRACTURES - VEINS - BRECCIA


686.30 V_C = fractures with chloritic/smectitic coating on surface

686.50 V = veinlets with quartz plus minor calcite plus chloritic/smectitic filling.

Note: 42 total fractures in the entire box of which 13 are zeolite filled. Others are chloritic/smectitic coated. Most of the zeolite filled fractures are irregular while many of the chloritic/smectitic coated fractures are more planar.

ROCK ALTERATION

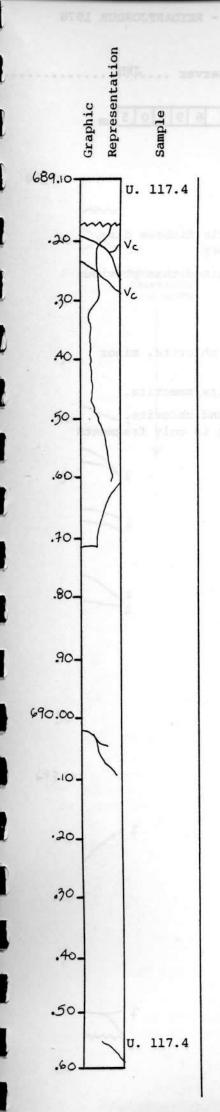
Fresh surface has faint greenish hue which is probably result of chloritic/smectitic alteration.

Observer

Depth Interval 68770 cm to 68917 cm Box 118, Section 2

LITHOLOGY-PETROGRAPHY

Medium-fine grained, light gray aphyric, basaltic diabase. Massive, very few fractures. Pyrite is very common both in rock and in some fractures.


VESICLES/AMYGDALES

None observed.

FRACTURES - VEINS - BRECCIA

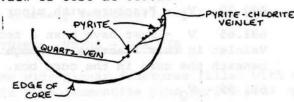
V_Q - filled with quartz

V_c - chloritic/smectite.

Observer ...JRD....

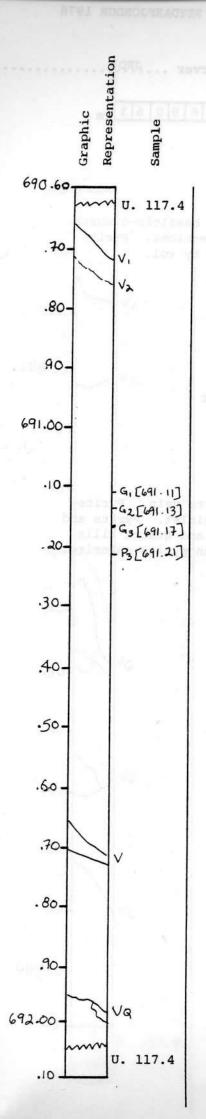
Depth Interval 6 8 9 1 7 cm to 6 9 0 6 3 cm Box 118 , Section 3

LITHOLOGY-PETROGRAPHY


Medium-fine grained, light gray, aphyric, basaltic-diabase. Very similar to previous and succeeding sections. Pyrite is distributed throughout rock $^{\circ}$.5 to 1% by vol.

VESICLES/AMYGDALES

None observed.


FRACTURES - VEINS - BRECCIA

End view of core at 689.20

Age relationship between sulfide and quartz vein. Pyrite-chlorite veinlet intersected by quartz veinlet. Pyrite and chlorite line the margin of the fracture and quartz fills the center. Quartz is probably later than pyrite-chlorite.

 V_c = chlorite, pyrite

Observer ... JRD

Depth Interval 69063 cm to 69205 cm

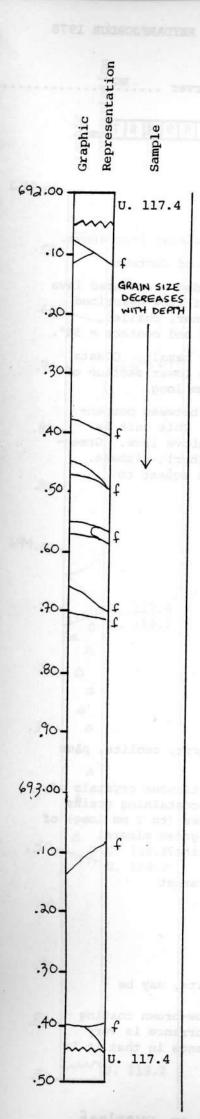
Box 118, Section 4.

LITHOLOGY-PETROGRAPHY

Medium grained light gray aphyric basaltic diabase disseminated pyrite which is probably primary.

This section is somewhat more coarse-grained than previous sections of the same unit.

FRACTURES - VEINS - BRECCIA


690.65 $\,$ V $_{1}$ - Veinlet with zeolites and chlorite, minor calcite, no pyrite. $\,$ $^{\circ}$ 2 mm apart.

690.70 V₂ - Fracture with minor chlorite/smectite.

691.65 V - Must have been a zeolite and chlorite.
Veinlet in this fracture although now it is only fragment

Veinlet in this fracture although now it is only fragments beneath the core in the core box.

691.95 V_Q

Observer ...JRD/NG....

Depth Interval 6 9 2 0 5 cm to 6 9 3 4 4 cm Box 119, Section 1

LITHOLOGY-PETROGRAPHY

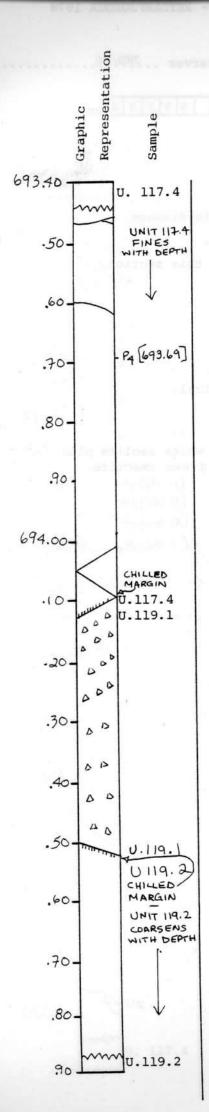
Medium fine grained greenish gray basaltic diabase. Pyrite disseminated throughout this unit.

Grain size decreased downward throughout this section.

STRUCTURE

Grain size fines downward.

VESICLES/AMYGDALES


Very sparsely vesicular. < 1 mm, spherical.

FRACTURES - VEINS - BRECCIA

2-3 mm wide planar fractures filled with white zeolite plus quartz plus laumontite plus pyrite plus green smectite.

ROCK ALTERATION

As in fractures.

ObserverNG

Depth Interval 6 9 3 4 4 cm to 6 9 4 8 7 cr

Box 119, Section 2

LITHOLOGY-PETROGRAPHY

Fine grained gray-green aphyric unit continued from above.

Interpreted to be a dike based on nature of contact.

U. 117.4 Dike interpreted to have intruded brecciated lava below, which is interpreted to be part of flow described in 117.3. Contact is sharp, roughly planar, chilled. Angle between perpendicular to core axis and contact = 56°.

U. 119.1 Brecciated, green-gray, phyric basalt. Clasts are similar to 117.3 which is similar to lower section of 117.1. Phenocrysts = plagioclase, 2-3 mm long.

U. 119.2 Contact = planar, sharp angle between perpendicular to core axis and contact = 20°. This unit is interpreted to be dike chilled against above lava. Greengray, fine to medium-grained, sparsely phyric diabase. Phenocrysts = plagioclase. Crystals are equant to elongate, 2-3 mm.

STRUCTURE

U. 117.4 Grain size fines downward

U. 119.1 Brecciated

U. 119.2 Unit coarsens downwards

VESICLES/AMYGDALES

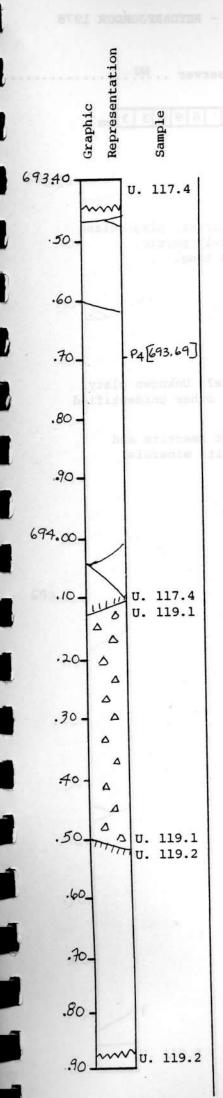
U. 119.1 Sparse, deformed.

U. 119.2 None

FRACTURES - VEINS - BRECCIA

Vein, planar, 3 mm wide filled with quartz, zeolite, plus green smectite.

693.90 In hairlike fracture.


= continuous crystals of calcite containing grains and blades (to 2 mm long) of unknown green mineral (actinolite?)

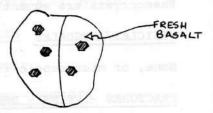
694.04 2-3 cm veins contain granular garnet

- Calcite
- 2. Unknown radiating zeolite
- 3. Pyrite
- 4. Elongate green mineral
- 5. Pumpelleyite ?
- Pink mineral may be zeolite, may be secondary feldspar
- Garnet grossularite yellow-brown coating fracture surface, this occurrence is very similar to previous occurrence in that it is very close to contact.

Core angle fracture = 20=50°.

continued on overleaf.

Observer


Depth Interval 69344 cm to 69487 cm

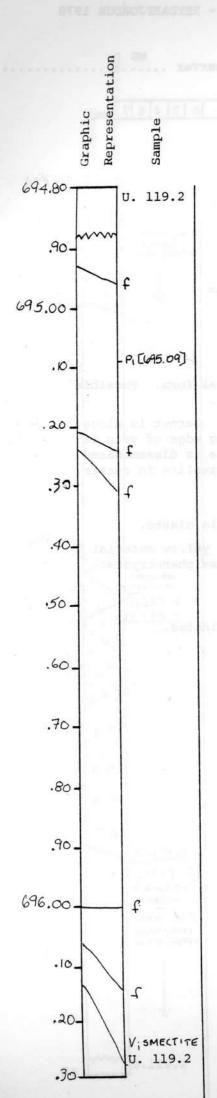
Box 119, Section 2

FRACTURES - VEINS - BRECCIA (continued)

U.119.2 Rare, hairlike fracture.

ROCK ALTERATION

U. 117.4
Minute crystals of pyrite in dodeccihedral form. Possible interpretation = pyrite replacing garnet.


Layering in vein is somewhat alterating. Garnet is along edge of vein as well as in center. Along edge of vein it appears to be invading host rock. Pyrite is disseminated throughout as well in host rock. White zeolite in center, green smectite along edges.

U. 119.1 White zeolites fill spaces between breccia clasts.

Section is highly altered. Fine grained yellow material occurs around the rims of some plagioclase phenocrysts.

OTHER

Incinorator disaster. Box carbon contaminated.

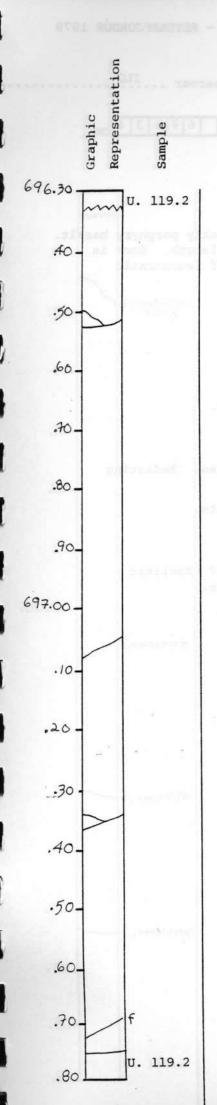
Visual Core Description Observer ..NG.....

Depth Interval 6 9 4 8 7 cm to 6 9 6 3 3 cm

Box 119, Section 3.

LITHOLOGY-PETROGRAPHY

Continuation of above unit. Slightly coarser, plagioclase laths in green mass to 1 mm long. Sparsely phyric. Phenocrysts are equant to elongate, 4 mm long.


VESICLES/AMYGDALES

None, or microscopic

FRACTURES - VEINS - BRECCIA

Rare fractures filled with green smectite? Unknown platy radiating glassy zeolite. Minor pyrite, other unidentified green mineral.

696.20 Vein filled with green and black smectite and fine grained disseminated crystals of white minerals. Quartz plus zeolite?

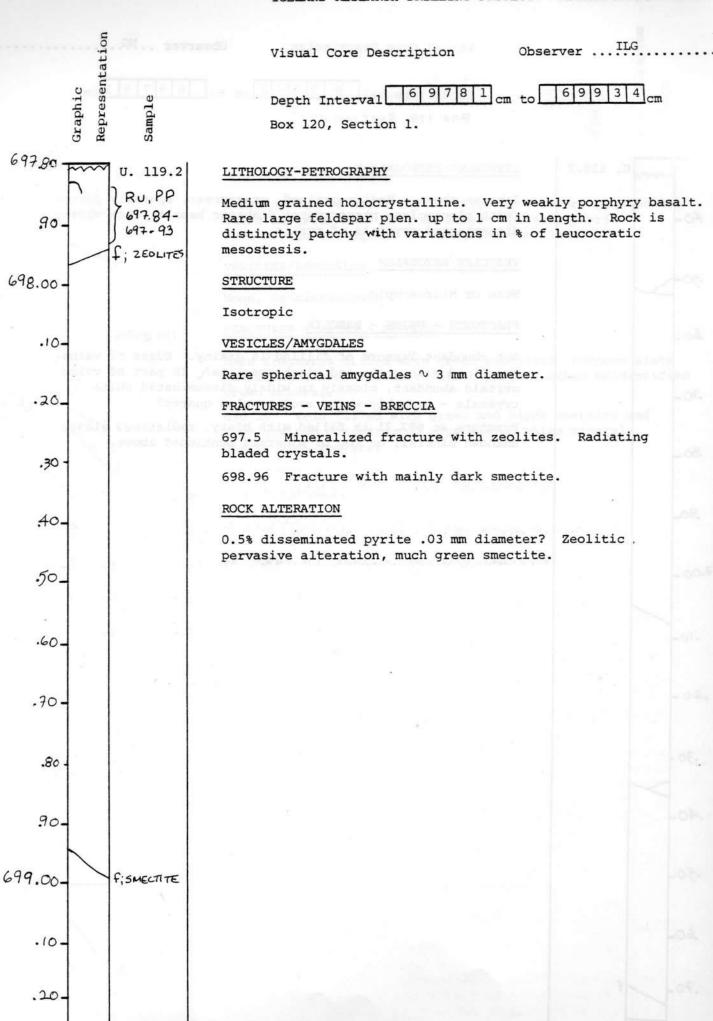
Visual Core Description Observer .. NG.....

Depth Interval 6 9 6 3 3 cm to 6 9 7 8 1 cm

LITHOLOGY-PETROGRAPHY

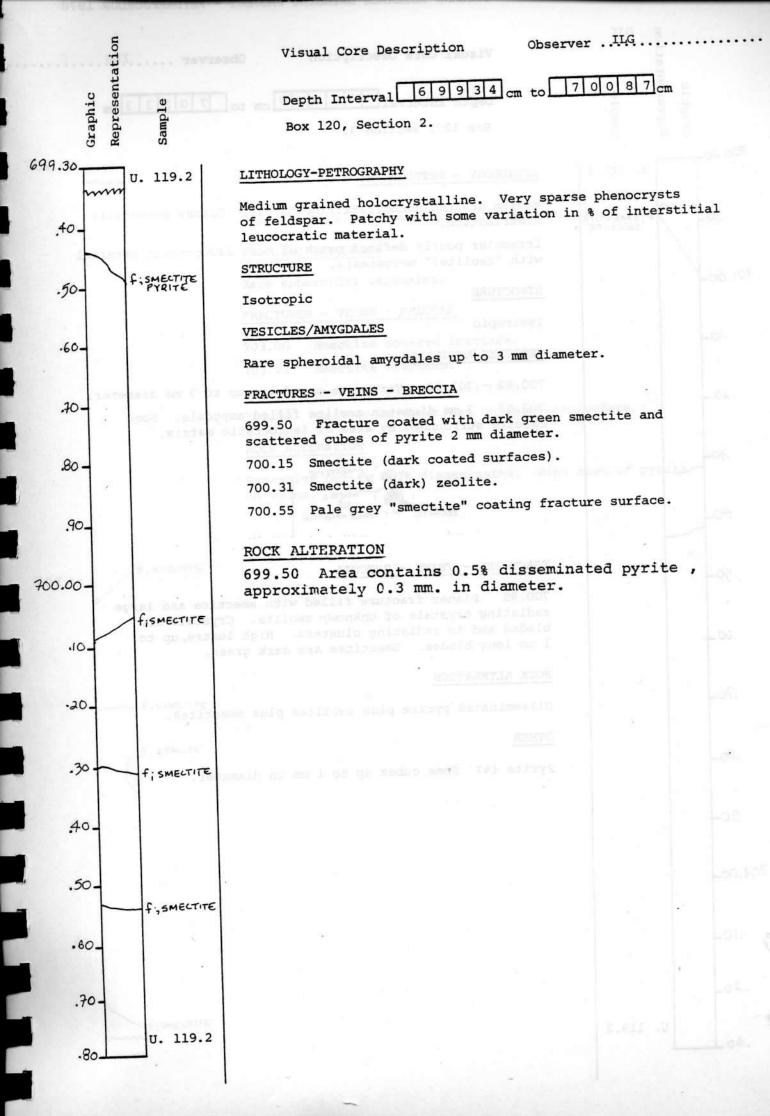
Box 119, Section 4

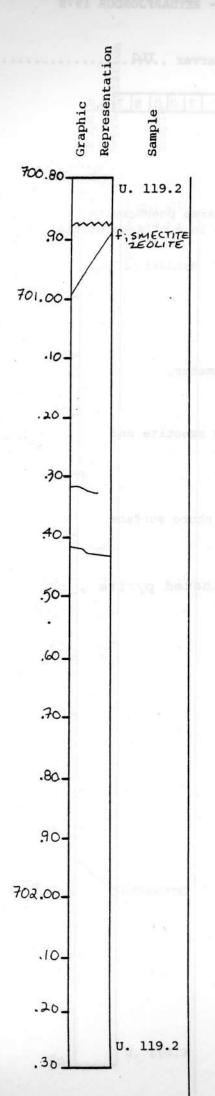
Same as above. Medium-grained, gray-green, sparsely phyric (with plagioclase phenocrysts) diabasic basalt, with widely disseminated crystals of pyrite.


VESICLES/AMYGDALES

None or Microscopic

FRACTURES - VEINS - BRECCIA


Not abundant. Texture of filling is grainy. Edges of veins are lined with green and black smectite? In part of veins certain abundant, closely to widely disseminated white crystals - probably white zeolite plus quartz?


Fracture at 697.71 is filled with platy, radiating, glassy unknown mineral, on top of minerals mentioned above.

U. 119.2

.30

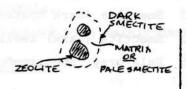
ObserverILG

Depth Interval 70087 cm to 70233 cm Box 120, Section 3.

LITHOLOGY - PETROGRAPHY

Medium grained holocrystalline basalt. Patchy mesostasis distribution.

Irregular poorly defined patch of more leucocratic material with "zeolite?" mesostasis.


STRUCTURE

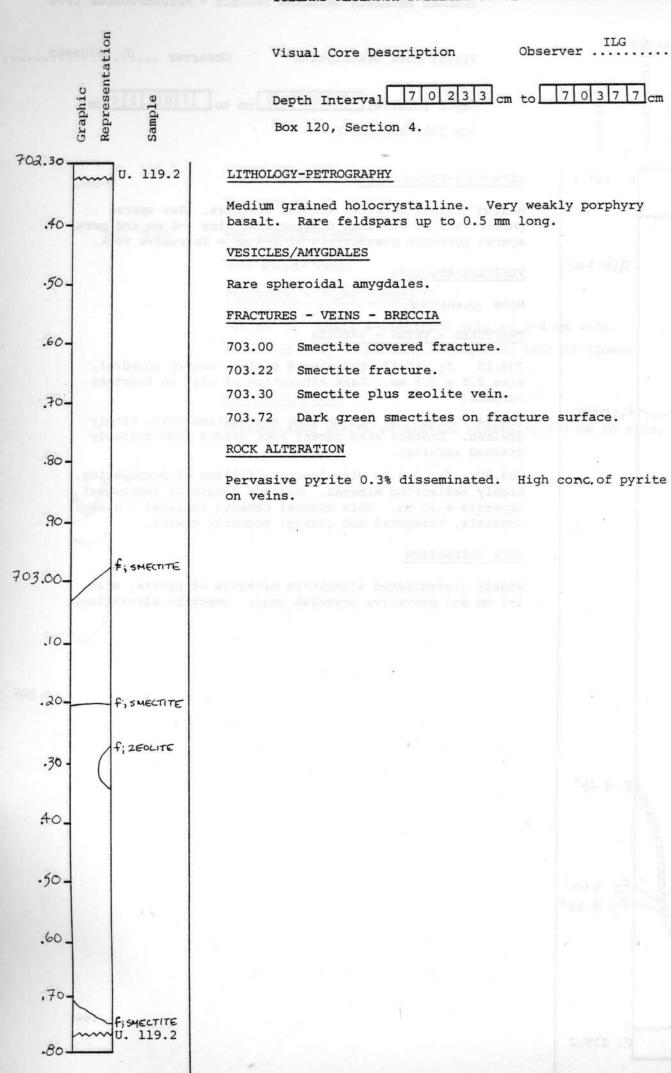
Isotropic

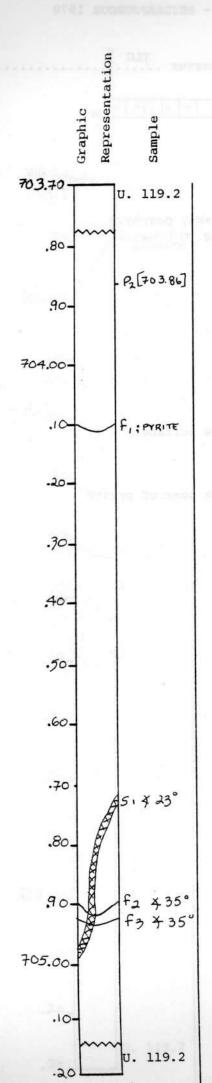
VESICLES/AMYGDALES

700.80 - 702.03 Very rare amygdales up to 3 mm diameter.

702.03 3 mm diameter zeolite filled amygdale. Some calcite surrounded by area of leucocratic matrix.

FRACTURES - VEINS - BRECCIA


700.95 Planar fracture filled with smectite and large radiating crystals of unknown zeolite. Crystals are bladed and in radiating clusters. High lustre, up to 1 cm long blades. Smectites are dark green.


ROCK ALTERATION

Disseminated pyrite plus zeolites plus smectites.

OTHER

Pyrite 1%? Some cubes up to 1 mm in diameter.

Observer ... J. Helgason

Depth Interval 7 0 3 7 7 cm to 7 0 5 1 4 cm Box 121, Section 1.

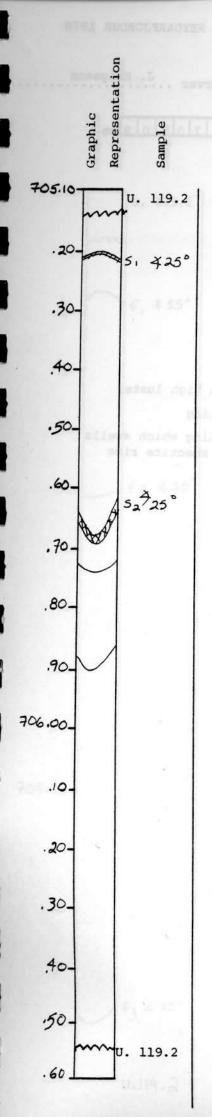
LITHOLOGY-PETROGRAPHY

Medium grained material without vesicles. Has sparse phenocrysts of euhedral plagioclase, size 4-6 mm and very sparse pyroxene phenocrysts of 2-3 mm = Intrusive rock.

VESICLES-AMGDALES

None observed.

FRACTURES - VEINS - BRECCIA


704.10 f_1 10-12 crystals of pyrite, mainly anhedral, size 2.5 x 2.5 mm. Dark alteration of clay on fracture surface.

704.74-704.95 s_1 20 mm wide segregation vein, finely grained. Contact with parent rock grades into coarsely grained material.

704.90 f₂ 2-3 mm wide fracture filling of a radiating, highly reflecting mineral. Maximum length of individual crystals = 20 mm. This mineral cements isolated < 1 mm crystals, hexagonal and glassy, probably quartz.

ROCK ALTERATION

Widely disseminated alteration minerals of pyrite, size 1-2 mm and pervasive greenish gray. Smectite alteration.

Observer . J. Helgason . .

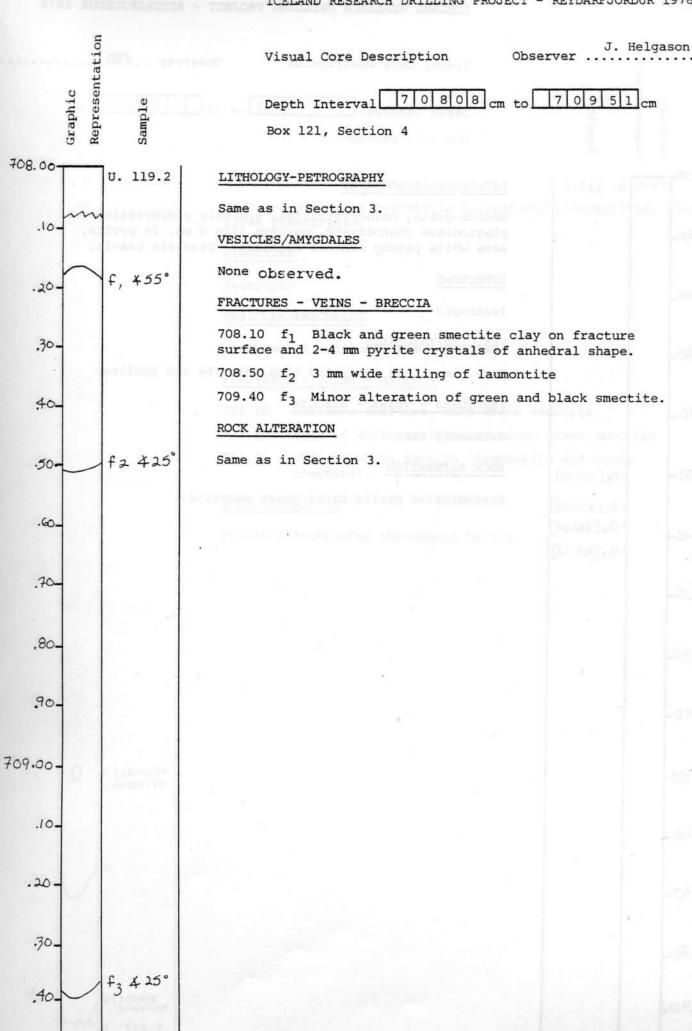
Depth Interval 7 0 5 1 4 cm to 7 0 6 5 5 cm

Box 121, Section 2.

LITHOLOGY-PETROGRAPHY

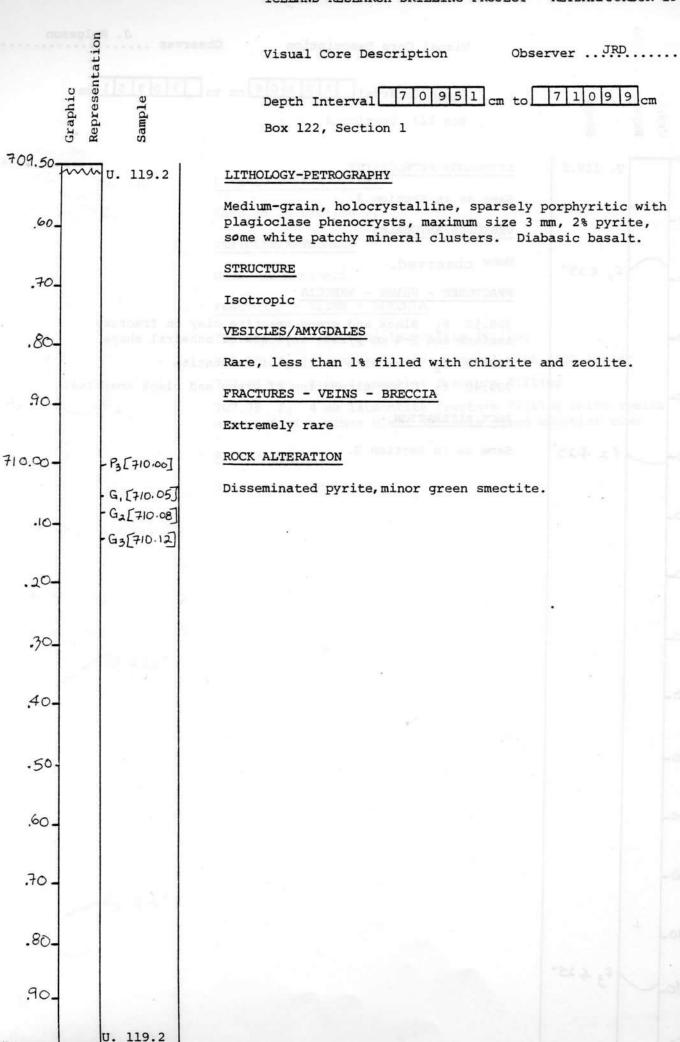
The same as in Section 1.

VESICLES/AMYGDALES

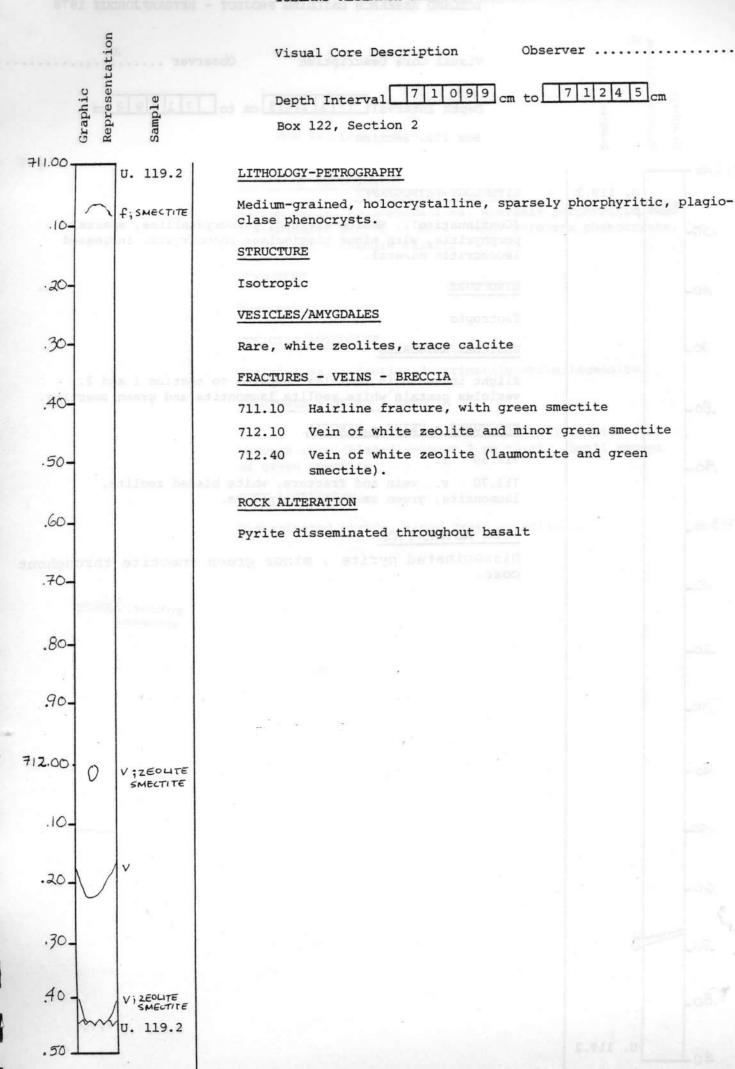

None observed.

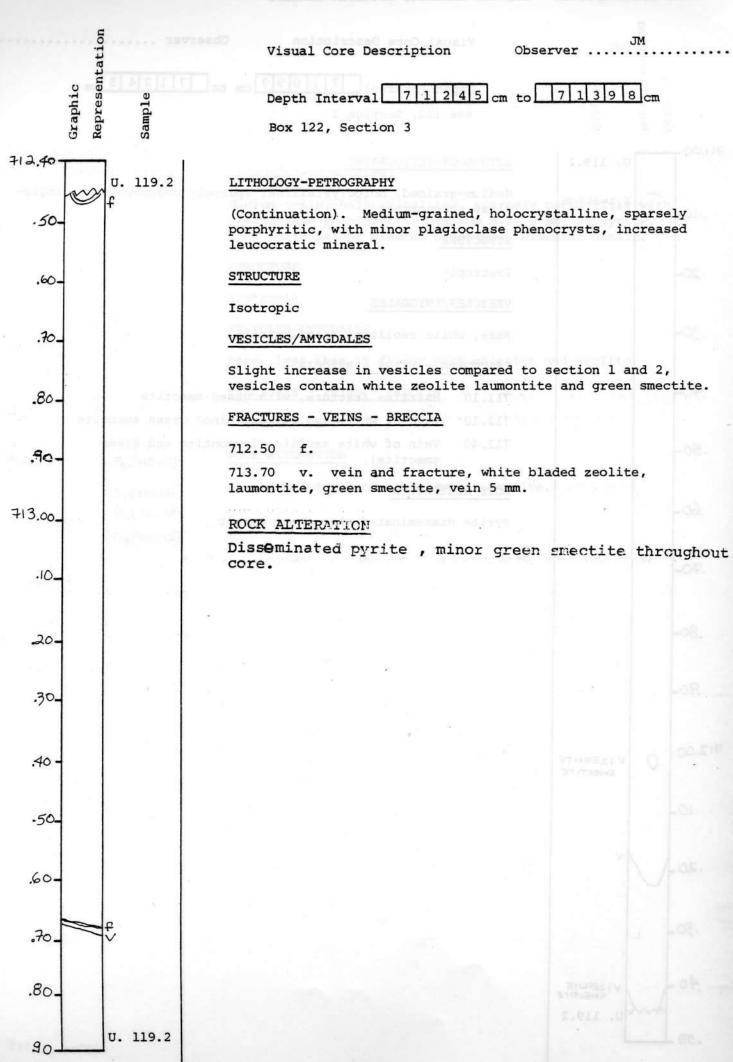
FRACTURES - VEINS - BRECCIA

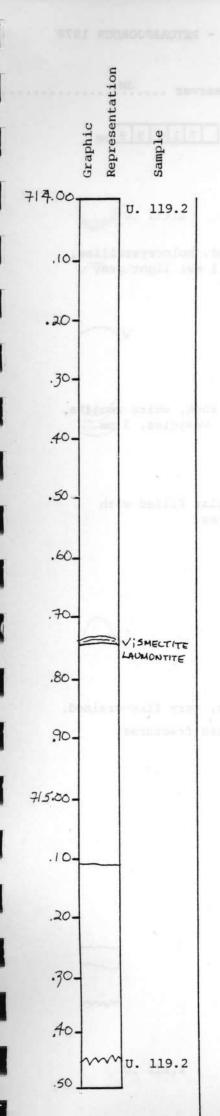
705.25 S_1 Small segregation veinlet 3-4 mm wide. 705.60-68. S_2 6 mm wide segregation vein of finely grained material.


ROCK ALTERATION

Disseminated pyrite alteration minerals, 2-4 mm in size.




.50


U.119.2

711.00-

ObserverJM

Depth Interval 7 1 3 9 8 cm to 7 1 5 4 5 cm

Box 122, Section 4.

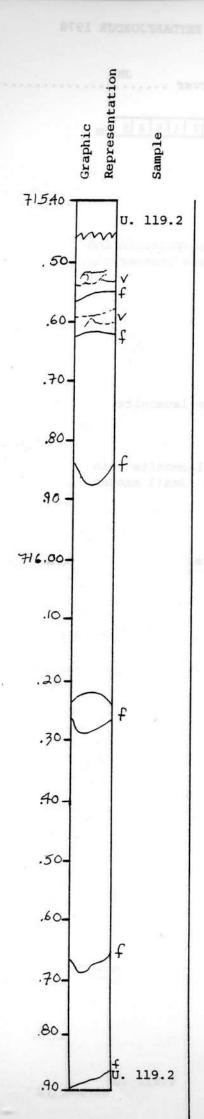
LITHOLOGY-PETROGRAPHY

Medium-grain, holocrystalline, sparsely porphyritic and disseminated pyrite (1 mm). Minor pyroxene phenocrysts, (1.5-2 mm). Diabase basalt.

STRUCTURE

Isotropic

VESICLES/AMYGDALES


Vesicles as in Section 3, primarily white laumonite.

FRACTURES - VEINS - BRECCIA

714.75 v. Double fracture with white laumonite vein through core (bladed) -- about 2 mm thick. Small amount of green smectite.

ROCK ALTERATION

Disseminated pyrite, minor green smectite.

Visual Core Description

ObserverJM....

Depth Interval 7 1 5 4 5 cm to 7 1 6 9 9 cm

Box 123, Section 1

LITHOLOGY-PETROGRAPHY

Continuation of Box 122. Medium grained, holocrystalline, sparsely porphyritic, plagioclase lath 1 mm; light grey in color.

STRUCTURE

Isotropic

VESICLES/AMYGDALES

Vesicles: irregular, less than 5% of rock, white zeolite,
laumontite, yellowish brown carbonate. Vesicles, 3 mm
- > 1 mm.

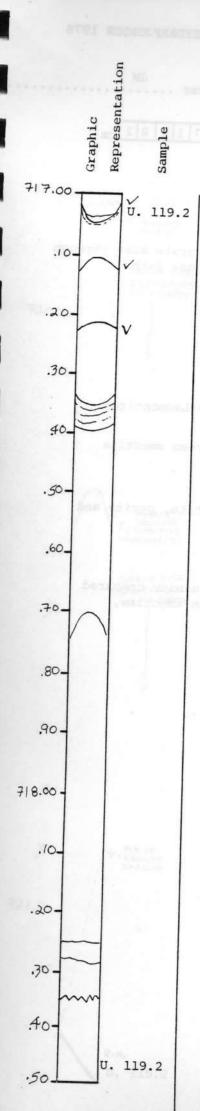
FRACTURES - VEINS - BRECCIA

715.60 Fractures and veinlets--irregular filled with white zeolites, minor pyrite in fractures.

715.85 f same as above

715.25 f same as above

715.65 f same as above


715.90 f same as above

ROCK ALTERATION

Pyrite disseminated throughout the rock, very fine-grained. Swelling clays due to the irregular fresh fractures.

OTHER

Box contaminated. STOVE EXPLODED.

Visual Core Description

Observer ... KHT...

Depth Interval 7 1 699 cm to 7 1834 cm

Box 123, Section 2

LITHOLOGY-PETROGRAPHY

Holocrystalline, medium-grey diabase basalt, crystals 0.1-0.5 mm length, some plagioclase phenocrysts(2 mm diameter). Disseminated pyrite, green smectite throughout.

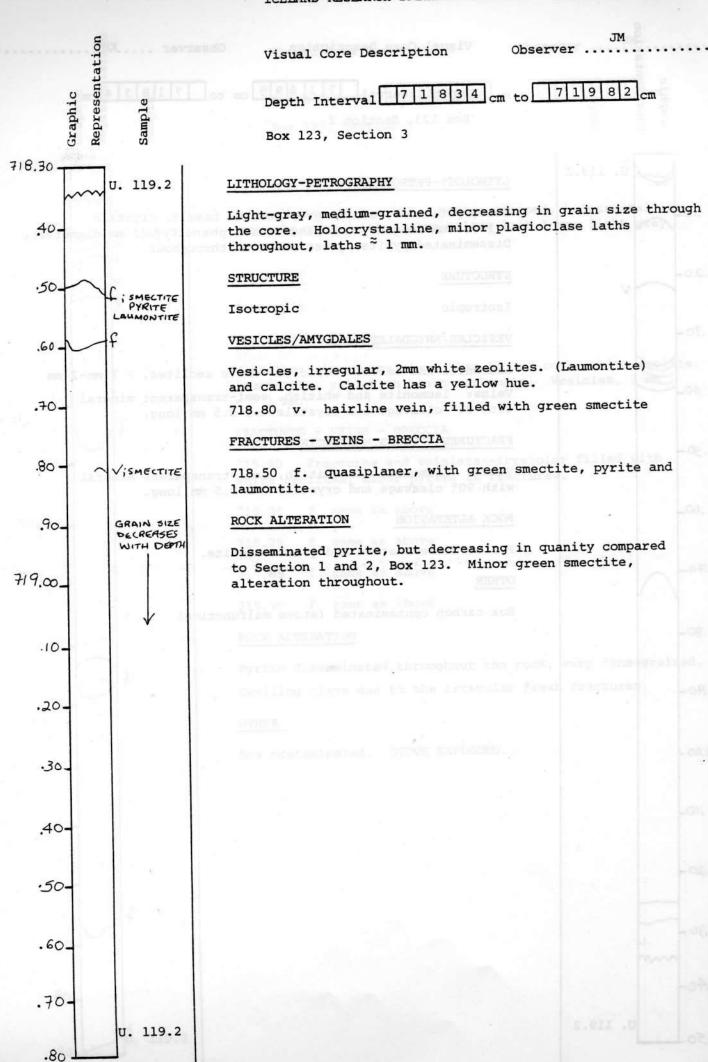
STRUCTURE

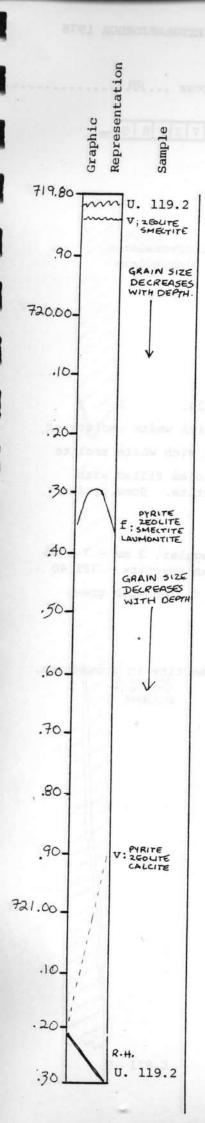
Isotropic

VESICLES/AMYGDALES

Laumonite and calcite vesicles--white zeolites, > 1 mm-2 mm Veins: laumonite and whitish, semi-transparent mineral with 90° cleavage and crystals 0.1-0.5 mm long.

FRACTURES - VEINS - BRECCIA


Veins: Laumonite and whitish, semi-transparent mineral with 90° cleavage and crystals 0.1-0.5 mm long.


ROCK ALTERATION

Pyrite dissemination and green smectite.

OTHER

Box carbon contaminated (stove malfunction)

Observer

Depth Interval 7 1 9 8 2 cm to 7 2 1 3 0 cm

Box 123, Section 4

LITHOLOGY-PETROGRAPHY

Light gray, medium to fine-grained, only minor plagioclase phenocrysts > 1 mm, and pyroxene phenocryst.

STRUCTURE

Isotropic

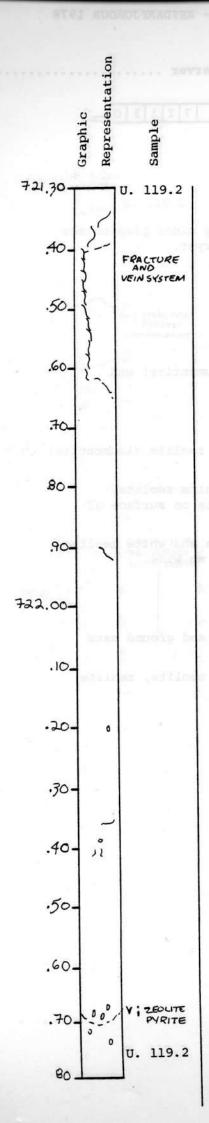
VESICLES/AMYGDALES

Rare, irregular 4 mm, white zeolite (laumontite) and calcite filling.

FRACTURES - VEINS - BRECCIA

719.80 v. top of core, vein with white zeolite (laumontite) and green smectite.

720.35 f. planer, simple, contains white zeolite, laumontite, and green smectite and pyrite on surface of fractured vein.


720.90 planer, simple, euhedral pyrite and white zeolite and calcite occurs in vein, vein is > 1 mm wide.

Core angle vein = 120°.

ROCK ALTERATION

Pyrite disseminated throughout the core and ground mass altering to green smectite.

721.20 R.H. alteration zone of white zeolite, zeolite boundary diffused.

Observer ... JM

Depth Interval 7 2 1 3 0 cm to 7 2 2 8 0 cm

Box 124, Section 1

LITHOLOGY-PETROGRAPHY

Continuation of Box 123. Light-gray, holocrystalline, fine-to medium grained diabase, rare plagioclase phenocrysts 7 mm-5 mm.

STRUCTURE

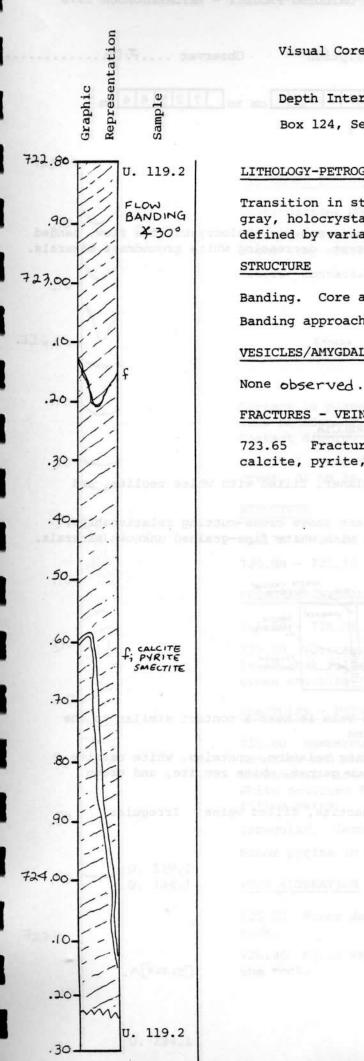
Isotropic

VESICLES/AMYGDALES

Vesicles; rare, > 1% of Section 1, Box 124.

722.20 vein - irregular, 7 mm, filled with white zeolite

722.40 vein - irregular, 1.5 cm, filled with white zeolite


722.70 vein - irregular, 1 mm-5 mm vesicles filled with zeolite (white) and rimmed by green smectite. Some pyrite.

FRACTURES - VEINS - BRECCIA

Fracture and vein system, fractures irregular, 2 mm - > 1 mm wide, pyritized, white (?) zeolite, green smectite - 721.40
722.80 Irregular and planar fractures filled with green smectite and white zeolites.

ROCK ALTERATION

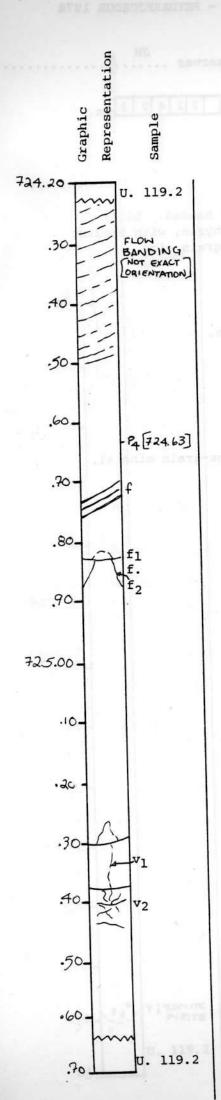
Pyrite disseminated throughout, green smectite in groundmass.

JM Visual Core Description Observer

7 2 2 8 0 Depth Interval

Box 124, Section 2

LITHOLOGY-PETROGRAPHY


Transition in structure from massive to banded. Light gray, holocrystalline, fine grained, aphyric, with banding defined by variation in coloration and grain size.

Banding. Core angle fracture = 30°. Banding approaches horizontal with depth.

VESICLES/AMYGDALES

FRACTURES - VEINS - BRECCIA

Fractures filled with white fine-grain mineral, calcite, pyrite, and green smectite.

Observer ... J.M.

Depth Interval 7 2 4 2 3 cm to 7 2 5 6 4 cm

Box 124, Section 3

LITHOLOGY-PETROGRAPHY

Continuation of Section 2.

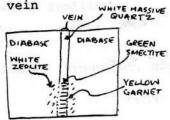
Light gray, fine-grained, aphyric, holocrystalline flow, banded diabase, micro phenocryst, decreasing white groundmass minerals. Decreasing grain size.

STRUCTURES

Banding

VESICLES/AMYGDALES

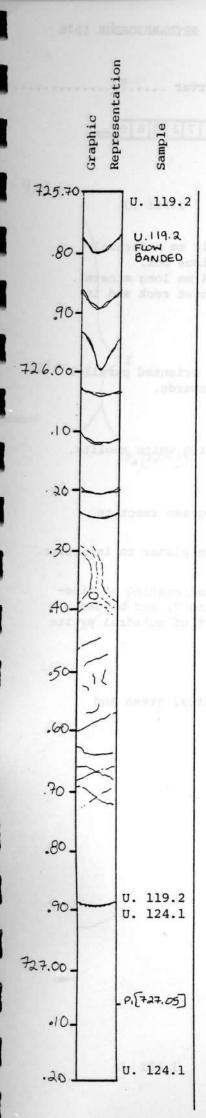
None observed.


FRACTURES - VEINS - BRECCIA

724.20 Irregular

724.70 Fractures, planer, filled with white zeolite, and green smectite.

724.85 f. fracture set shows cross-cutting relationships, both fractures filled with white fine-grained unknown minerals. f_1 cross-cuts f_2 .


725.30-725.38 vein

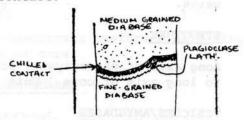
Note this garnet rich vein is near a contact similar to the other garnet rich veins.

Vein shows cross-cutting relation, contains, white massive quartz, abundant yellow garnet, white zeolite, and green smectite.

725.40 v_2 green smectite, filled veins. Irregular hairline.

Observer ...JM

Depth Interval 72564 cm to 72721 cm


Box 124, Section 4

LITHOLOGY-PETROGRAPHY

Continuation.

725.72 - 726.88 Fine-medium grained aphyric, diabase, light-gray color, microphenocryst.

726.88 Contact.

Contact is planer and shows chilling in unit 124.1, with flow banding of unit 119.2 being truncated at contacts. Contact dipping 30° from horizontal.

U. 124.1 Very fine-grained diabase with 1% plagioclase phenocryst, 31 nm in size, gray colored.

STRUCTURE

725.70 - 726.88 (U.119.2) Banded

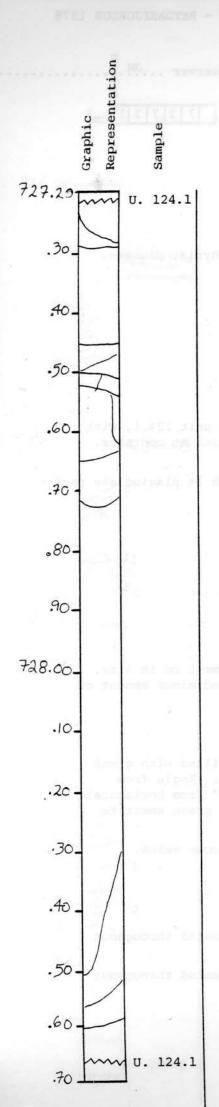
726.88 - 727.10 Massive

VESICLES/AMYGDALES

725.80 - 726.88 None

726.90 Vesicles. Irregular shaped, 4 mm-1 mm in size, 1% of rock filled with white zeolites and minor amount of green smectite.

FRACTURES - VEINS - BRECCIA


725.80 Numberous viens and fractures filled with green smectite and white zeolite (laumontite). Angle from horizontal varies from high angle to 40° from horizontal. White zeolites filled veins are planer, green smectite filled veins.

Irregular. Garnet might be present in some veins. Minor pyrite in veins.

ROCK ALTERATION

725.90 Minor amounts of pyrite disseminated throughout rock.

726.90 Minor amounts of pyrite disseminated throughout the rock.

ObserverNG

Depth Interval 7 2 7 2 1 cm to 7 2 8 6 6 cm

Box 125, Section 1

LITHOLOGY-PETROGRAPHY

Gray-green fine to medium-grained sparsely to moderately phyric basalt. Unit continued from previous box. Phenocrysts - plagioclase plus mafic, 3-4 mm long mineral. Pyrite < 1% of rock, disseminated throughout rock and in veins.

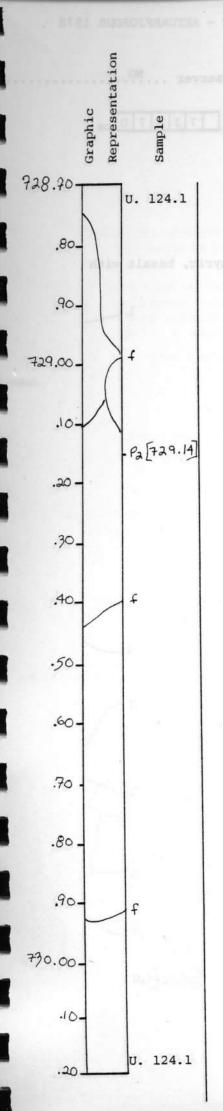
STRUCTURE

Long axis of phenocrysts, preferentially oriented parallel to long axis of core. Unit coarsens downwards.

VESICLES/AMYGDALES

Rare to absent. < 1 mm usually filled with white zeolite.

FRACTURES - VEINS - BRECCIA


Filled primarily with white zeolite and green smectite and minor amounts of calcite.

Rock not highly fractured. Fractures are planar to irregular. Unbroken fractures are \circ 1 mm wide.

728.20 Vein at 728.20 contains a speckled coating of fine-grained white mineral (quartz plus zeolite?) and bladed radiating white zeolite, topped with $^{\circ}$ 2% of euhedral pyrite crystals $^{\circ}$ 1 mm in size.

ROCK ALTERATION

Pyrite may be alteration product. Zeolites, green and black smectite.

ObserverNG

Depth Interval 7 2 8 6 6 cm to 7 3 0 2 4 cm

Box 125, Section 2

LITHOLOGY-PETROGRAPHY

Continuation of above unit.

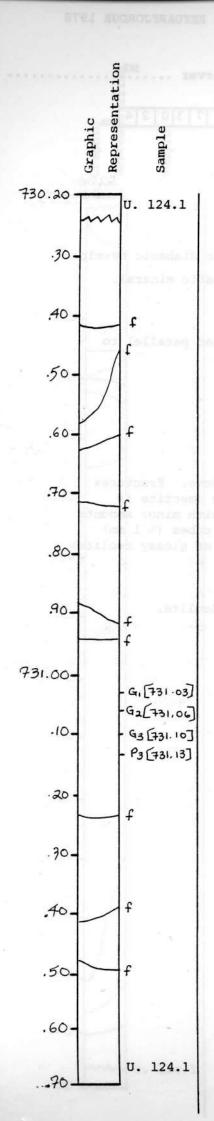
Gray-green, medium grained, slightly phyric diabasic basalt.

Phenocrysts up to 4 mm of feldspar and mafic mineral.

STRUCTURE

729.00 Phenocrysts preferentially aligned parallel to long axis of core.

VESICLES/AMYGDALES


None observed.

FRACTURES - VEINS - BRECCIA

Rock not highly fractured--similar to above. Fractures zoned with green smectite on edge; above smectite is white granular, fine grained zeolite?, with minor amounts of calcite. On top of this is euhedral cubes (~ 1 mm) of pyrite and/or platy radiating bladed of glossy zeolites.

ROCK ALTERATION

Calcite, chlorite? or green smectite? Zeolite.

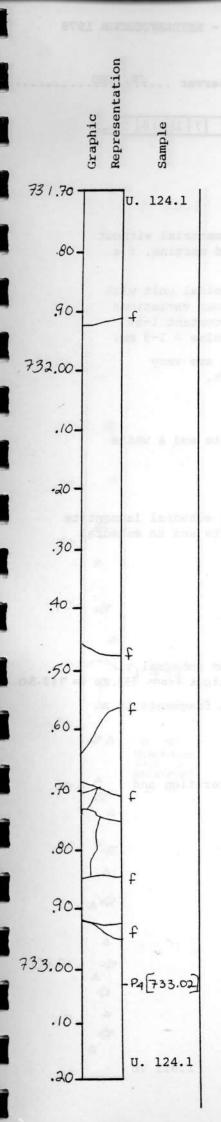
Visual Core Description Observer ... NG.....

Depth Interval 73024 cm to 73170 cm

Box 125, Section 3.

LITHOLOGY-PETROGRAPHY

Same as above.


Gray-green, medium grained, sparsely phyric, basalt with phenocrysts of plagioclase and mafics.

VESICLES/AMYGDALES

Rare

FRACTURES - VEINS - BRECCIA

Rock not highly fractured. Core angle fracture variable Filling same as above.

Observer ... NG.....

Depth Interval 7 3 1 7 0 cm to 7 3 3 2 0 cm Box 125, Section 4

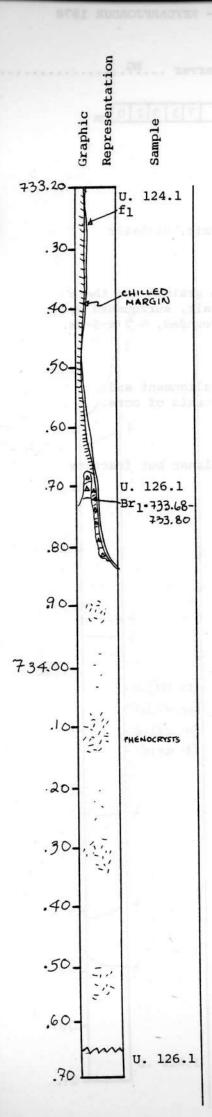
LITHOLOGY-PETROGRAPHY

Medium grained, green-gray, sparsely phyric, diabasic basalt.

Green mass fines downward.

733.15 At 733.15, the rock is very fine grained and there is an inclusion of green porphyritic basalt, surrounded by chilled margin. Inclusion is slightly rounded, \sim 2 x 2 cm.

STRUCTURE


Moderately well-developed, preferential alignment and plagioclase phenocrysts parallel to long axis of core.

FRACTURES - VEINS - BRECCIA

Fractures similar to above. Generally planar but fracture at 732.80 has steplike structure.

732.66 Calcite abundant in fracture.

Observer ... JR, JRD.

Depth Interval 7 3 3 2 0 cm to 7 3 4 6 5 cm

Box 126, Section 1

LITHOLOGY-PETROGRAPHY

733.20 - 733.70 Fine grained, aphyric material without vesicles or flow structures with chilled margins, i.e. intrusive.

733.70 - 734.70 Finely grained amygdaloidal unit with irregular flow structures and great colour variations from light gray to blue gray. Vesicle content 1-5% but erratic distribution. Size of vesicles $\simeq 1-3$ mm.

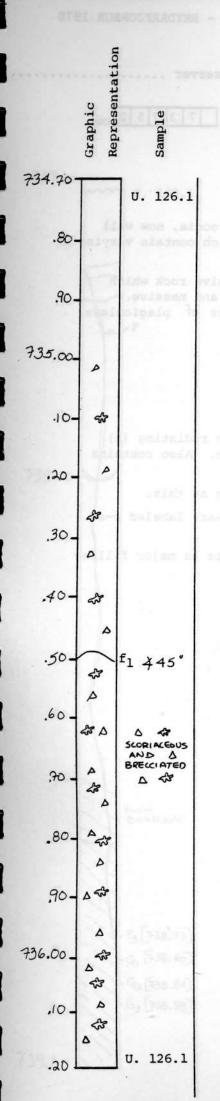
Plagioclase phenocryst of $^{\wedge}$ 1-2 mm size are very sparsely distributed throughout the rock.

VESICLES/AMYGDALES

733.80 Vesicles - contain green smectite and a white massy material.

FRACTURES - VEINS - BRECCIA

733.20 f₁ Fracture filling containing euhedral laumontite crystals and 10-20 mm crystals of calcite and an euhedral unknown crystal.



733.40 Chilled margin with small < 1 mm euhedral laumontite and some calcite. Follows fracture from 733.20 to 733.80.

733.68 - 733.80 Br₁ Greenish breccia fragments in a matrix of laumontite.

ROCK ALTERATION

733.70 Pervasive greenish smectite-alteration and disseminated minerals of pyrite.

Observer ... JH, JRD...

Depth Interval 7 3 4 6 5 cm to 7 3 5 2 0 cm

Box 126, Section 2

LITHOLOGY-PETROGRAPHY

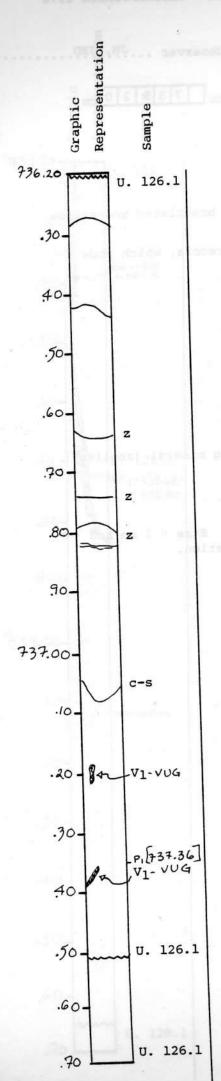
Similar to Section 1, but grades into brecciated scoracious material of the same texture.

735.70 Several larger fragments in breccia, which show a to previous rock types.

STRUCTURE

735.50 f_1 Core angle fracture = 45°.

VESICLES/AMYGDALES


Same as in previous section.

FRACTURES - VEINS - BRECCIA

735.50 f_1 Coating of glassy radiating mineral (zeolite?) and grayish green smectite alteration.

ROCK ALTERATION

Disseminated anhedral pyrite. Size < 1 mm and pervasive grayish-green, smectite alteration.

Depth Interval 7 3 6 2 0 cm to 7 3 7 5 2 cm

Observer

Box 126, Section 3

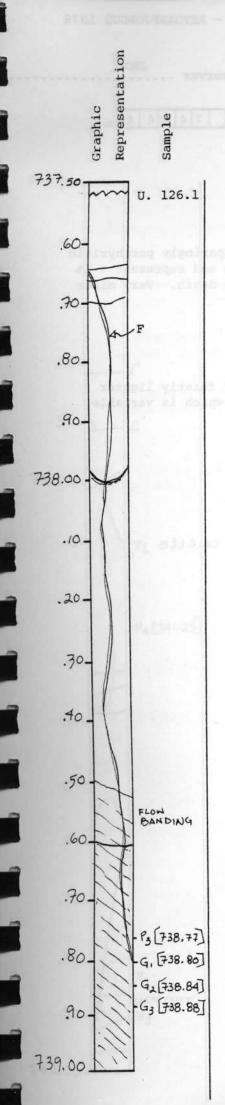
LITHOLOGY-PETROGRAPHY

Continue part of scoriaceous flow top breccia, now well indurated with variety of fragments which contain varying amounts of phenocrysts and vesicles.

736.85 Gradational change to more massive rock which is sparingly porphyritic non-vesicular and massive. Phenocrysts are mostly micro-phenocrysts of plagioclase.

VESICLES/AMYGDALES

Variable depending on fragments.


FRACTURES - VEINS - BRECCIA

Fractures vary but many contain unknown radiating (z) zeolite with abundant chlorite/smectite. Also contains sulfide which may be chalcopyrite.

Most of the fractures marked z are such as this.

Not all fractures contain zeolites--smears labeled c-s for chloritic/smectite.

 V_1 - Vug filling with quartz as major filling material.

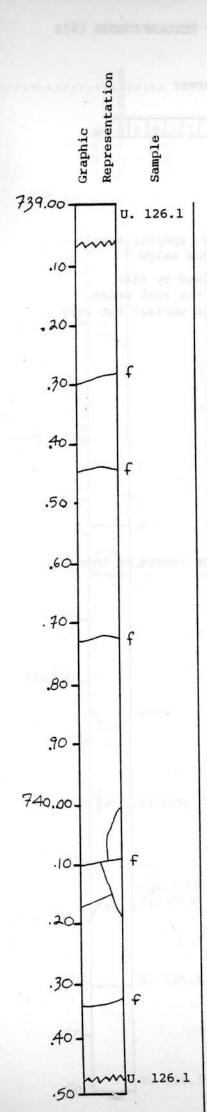
Depth Interval 73752 cm to 73906 cm

Box 126, Section 4.

LITHOLOGY-PETROGRAPHY

Massive fine-grained, light greenish-gray, aphyric basalt. Gradually changes to flow banded unit - see below.

738.55 Well-defined primary banding defined by discontinuous 1 mm wide light gray zones in the rock which is dominantly dark greenish-gray. Genesis unclear but very commonly found in Walker's "tholeiites".



VESICLES/AMYGDALES

None observed.

FRACTURES - VEINS - BRECCIA

737.75 F Fracture runs almost the entire length of this section coated with chlorite and pyrite.

Observer

Depth Interval 7 3 9 0 6 cm to 7 4 0 4 8 cm

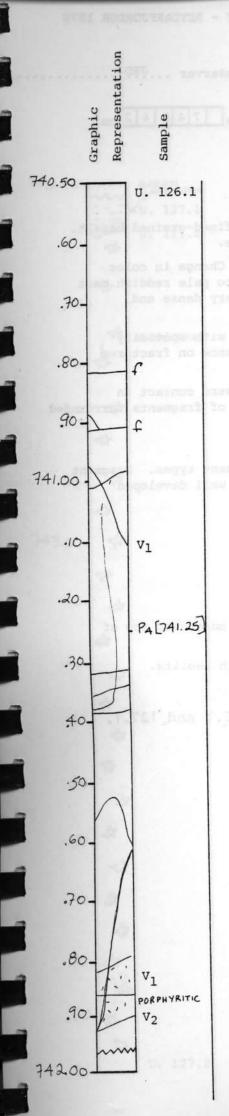
Box 127, Section 1

LITHOLOGY-PETROGRAPHY

Continued.

Light-gray, fine-grained, flow banded sparingly porphyritic basalt. Plagioclase phenocrysts < 1 mm and represent < 1% by volume and proportion decreases with depth. Very minor disseminated pyrite.

739.50 Disseminated pyrite.


STRUCTURE

"Flow banding" defined by 1 mm bands of faintly lighter material. Flow banding has core angle which is variable from \sim 40° to 25°.

FRACTURES - VEINS - BRECCIA

Fractures are coated with chlorite and calcite but little else.

Observer ...JRD

Depth Interval 7 4 0 4 8 cm to 7 4 1 9 6

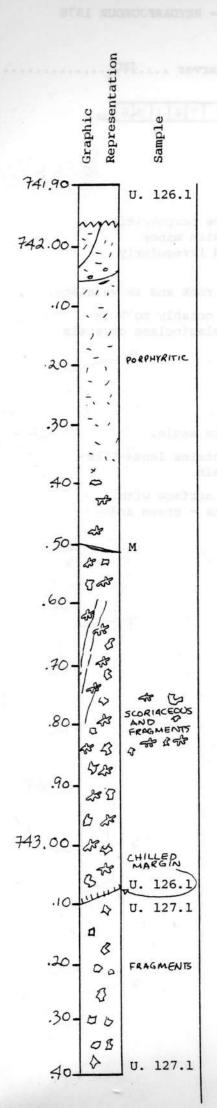
Box 127, Section 2

LITHOLOGY-PETROGRAPHY

Light greenish gray, homogeneous, massive porphyritic basalt. Phenocrysts $^{\circ}$ 1-2% - pyroxene with minor plagioclase. Disseminated pyrite spaced irregularly throughout rock.

741.60 Pyroxene and pyrite increase in rock and in veinlets.

741.80 Porphyritic character increases notably to $^{\circ}$ 5% pyroxene phenocrysts up to .3 cm long--plagioclase crystals also increase.


FRACTURES - VEINS - BRECCIA

740.65 Pyrite fracture facies

741.00 Most fractures have very low core angle.

741.10 $\,\mathrm{V}_{1}\,$ Chlorite bearing veinlet contains lense-like clots of chlorite in the plane of the vein.

741.85 V₂ Abundant pyrite on fracture surface with unknown clear radiating zeolite, chlorite - green and black smectite.

Observer ... JRD.

Depth Interval 7 4 1 9 6 cm to 7 4 2 4 2 cm

Box 127, Section 3

LITHOLOGY-PETROGRAPHY

Light greenish-gray, pyroxene phyric, fined-grained basalt. Minor amygdales and filled with zeolite.

742.40 Begin scorizeous flow bottom. Change in color from massive, light and greenish gray to pale reddish cast of scoria--this portion of scoria is very dense and fragments are well indurated.

742.50 M - Mineral--possibly olivine? with spatially associated pyrite and calcite? Occurrence on fractured surface.

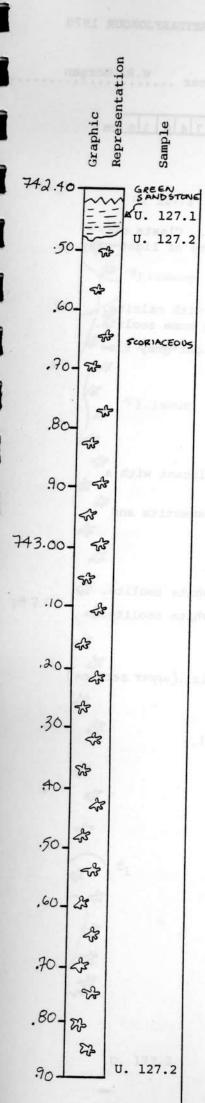
Proportion of plagioclase increases toward contact in mixture of scoriaceous fragments. Some of fragments surrounded by pale pink material.

743.10 Minor chilling of flow bottom.

Sedimentary unit--wide variety of fragment types. Fragment size up to 5 cm, somewhat rounded with well developed laminae of varying grain size.

VESICLES/AMYGDALES

Amygdales with zeolite?


FRACTURES - VEINS - BRECCIA

742.40 Calcite mass filling irregular zone near top of underlying scoria.

Many discontinuous fractures filled with zeolite.

STRUCTURE

Chilled contact between units 126.1 and 127.1.

Visual Core Description Observer ...JRD....

Depth Interval 7 4 2 4 2 cm to 7 4 3 9 0 cm

Box 127, Section 4

LITHOLOGY-PETROGRAPHY

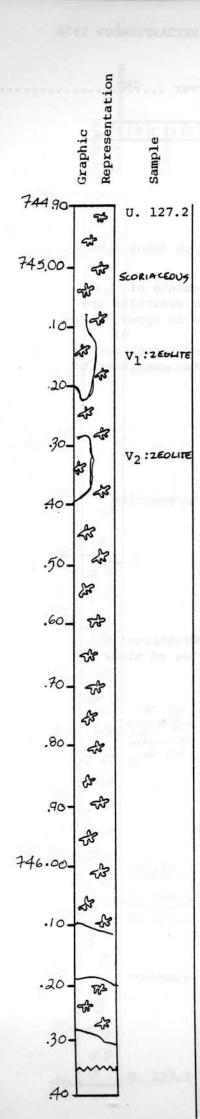
U. 127.1 Thin layer of green sandstone in depositional contact with underlying unit.

U. 127.2 Flow top scoria--many mixed fragments of greenish reddish irregular form. Many are vesicular and porphyritic, interstices between fragments in upper portion of scoria top filled with green of overlying material. Rock is well indurated though porous as it absorbs water rapidly. This character continues to bottom of this box.

STRUCTURE

None observed.

VESICLES/AMYGDALES


Zeolite filling of open space with chlorite/smectite closely associated.

FRACTURES - VEINS - BRECCIA

None observed.

ROCK ALTERATION

Rock alteration is oxidation and later hydrothermal deposition of chlorite/smectite and zeolites of minor calcite.

Observer W.R. Morgan

Depth Interval 7 4 4 9 0 cm to 7 4 6 3 6 cm

Box 128, Section 1

LITHOLOGY-PETROGRAPHY

Heterogeneous scoriaceous basalt flow top. Clasts of variable size, average 2-5 cm. Some clasts of light-gray amygdale basalt. Some with no vesicles.

Reddish oxidation stains present.

Open spaces in some areas zeolite filled with calcite. Minor amounts of pyrite found surrounding some zeolite.

746.10-746.18 Portion of more massive light-gray flow basalt.

746.20-746.34 Scoria.

746.35 Flow basalt.

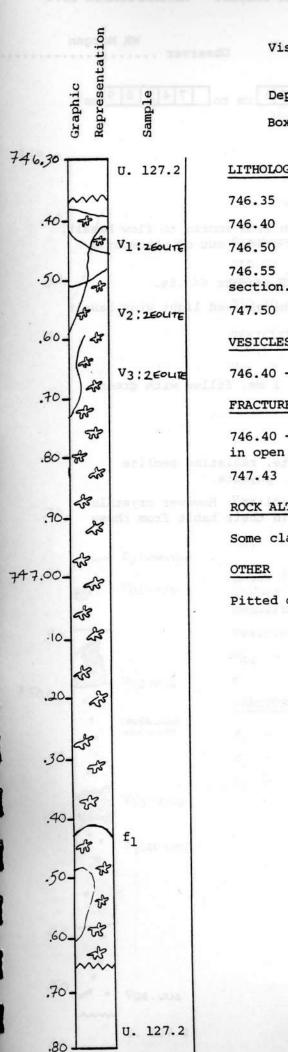
VESICLES/AMYGDALES

745.10 Vesicles of white zeolite, translucent with a radiating habit.

Pyrite found surrounding some including smectite and chlorite.

FRACTURES - VEINS - BRECCIA

745.10 - 745.20 V_1 Hairline veins of white zeolite.


745.28 - 745.38 V₂ Hairline veins of white zeolite.

ROCK ALTERATION

Some clasts weathered to a clayey material. (upper section)

OTHER

745.23 Pitted due to outwash from drill.

WR Morgan Observer .

7 4 6 3 6 cm to 7 4 7 Depth Interval

Box 128, Section 2

LITHOLOGY-PETROGRAPHY

746.35 Continuation of flow material.

746.40 Scoria.

746.50 Flow material.

746.55 Continuation of scoriaceous flow from previous section. Scoria more chaotic in area around discontinuity.

747.50 Flow basalt.

VESICLES/AMYGDALES

746.40 - 746.70 Vesciles described as laumontite.

FRACTURES - VEINS - BRECCIA

746.40 - 746.70 V_1 , V_2 , V_3 - hairline veins terminating in open spaces now occupied by zeolites.

747.43 f₁ Fracture filled with quartz.

ROCK ALTERATION

Some clasts weathered to a clayey material.

Pitted due to outwash from drill.

WR Morgan

Depth Interval 7 4 7 6 5 cm to 7 4 9 0 9 cm

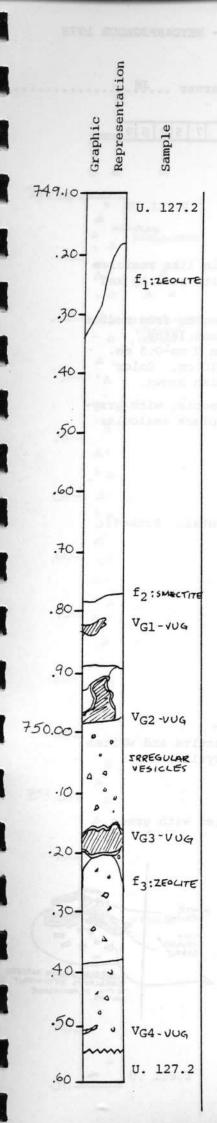
Box 128, Section 3

LITHOLOGY-PETROGRAPHY

Scoria continued.

747.76 Very sharp demarkation from scoria to flow basalt. which is still brecciated but grades out of the scoria by 749.00 m.

Pyrite dispersed in very small amounts << .5%.


748.70 Flow basalt. Very fine-grained light gray basalt with few vesicles.

VESICLES/AMYGDALES

748.70 Very small vesicles < 1 mm, filled with green mineral.

FRACUTRES - VEINS - BRECCIA

- f₁ Fracture contains 1. white, radiating zeolite
 2. chlorite/smectite, 3. phyrite.
- Vein contains radiating zeolite. However crystals are distinctly different in their habit from those previously described.
- f₂ Same as f₁

Observer WR Morgan

Depth Interval 7 4 9 0 9 cm to 7 5 0 5 5 cm Box 128, Section 4

LITHOLOGY-PETROGRAPHY

Flow continued from Section 3

749.90 - 750.00 Distinguishing change in grain size, fracture shows almost cherty texture.

750.00 Contains numerous hairline veins, filled with white material.

750.40 - 750.50 Red stains, possibly due to oxidation present.

VESICLES/AMYGDALES

V_{G1} - massive granular white mineral filling identical to unknown higher in hole.

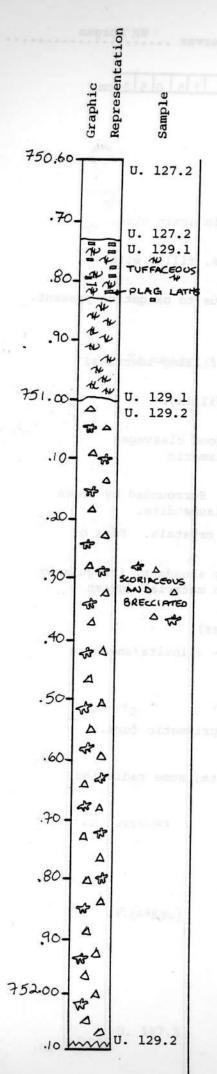
vug has massive white mineral filling.

- J.D. using oil determined

 - possible quartz
- V_{G2} vug filled with white mineral. Surrounded by green smectite/chlorite, definently laumandite.
- V_{G3} very well developed laumandite crystals. Edge of vug rimmed with chlorite.

Below 750.00 Basalt contains regularly abundant, irregularly shaped vesicles, filled with dark green material (green smectite).

Vesicles grade out towards bottom (fewer).


 ${
m V}_{\rm G4}$ - vug filled white hard zeolite - chlorite/smectite rim.

FRACTURES - VEINS - BRECCIA

f₁ - contains white zeolite showing prismatic form.

f₂ - contains smectite (black)

f₃ - coating of poorly defined zeolite, some radiating habits.

Observer ...JM .

Depth Interval 75055 cm to 75209

Box 129, Section 1

LITHOLOGY-PETROGRAPHY

Continuation.

Light gray, fine-grained basalt, with vein like vesicles lined with chalcedony and filled with white zeolite and green smectite.

U. 129.1 Bedded tuffaceous sediment, ranging from medium to very coarse grained euhedral plagioclase, laths abundant in upper 10 cm, laths range from 2 mm-0.5 mm. Flattened (?) pumice fragments in upper 10 cm. Color variation range from bluish gray to reddish brown.

U. 129.2 Coarse scoriaceous flow top breccia, with grayfine grained non-vesicular fragment and black vesicular breccias, groundmass reddish brown.

STRUCTURE

U. 127.2 Massive

U. 129.1 Bedding dips 5-10° from horizontal. Eutaxitic structure.

U. 129.2 Brecciated

VESICLES/AMYGDALES

U. 127.2

GRAY (?) CHALCEDONY
WAING VESICLES
WHITE ZEOLITE FILLING VESICLES

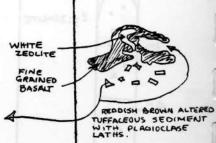
U. 129.1 None

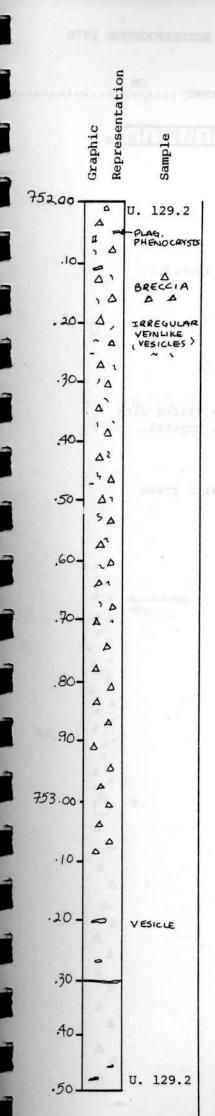
U. 129.2 Vesicles filled with green smectite and white zeolites, white massive quartz and (?) pyrite.

FRACTURES - VEINS - BRECCIA

U. 127.2 Hairlike, fracture, rare, filled with green smectite and white zeolites.

U. 129.1 None


U. 129.2 Rare, hair like


ROCK ALTERATION

Contact between U. 127.2 and U. 129.1, irregular.

Groundmass altered to reddish brown clays.

Contact between U. 129.1 and 129.2, irregular.

Observer ...JM

Depth Interval 7 5 2 0 0 cm to 7 5 5 5 4 cm

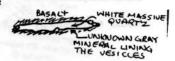
Box 129, Section 4

LITHOLOGY-PETROLOGY

752.10 - 753.10 Coarse breccia, gray color, with elongated vesicles and irregular vesicles, with sporadic plagioclase phenocrysts.

753.10 - 753.60 Transition from brecciated to non-brecciated basalt.

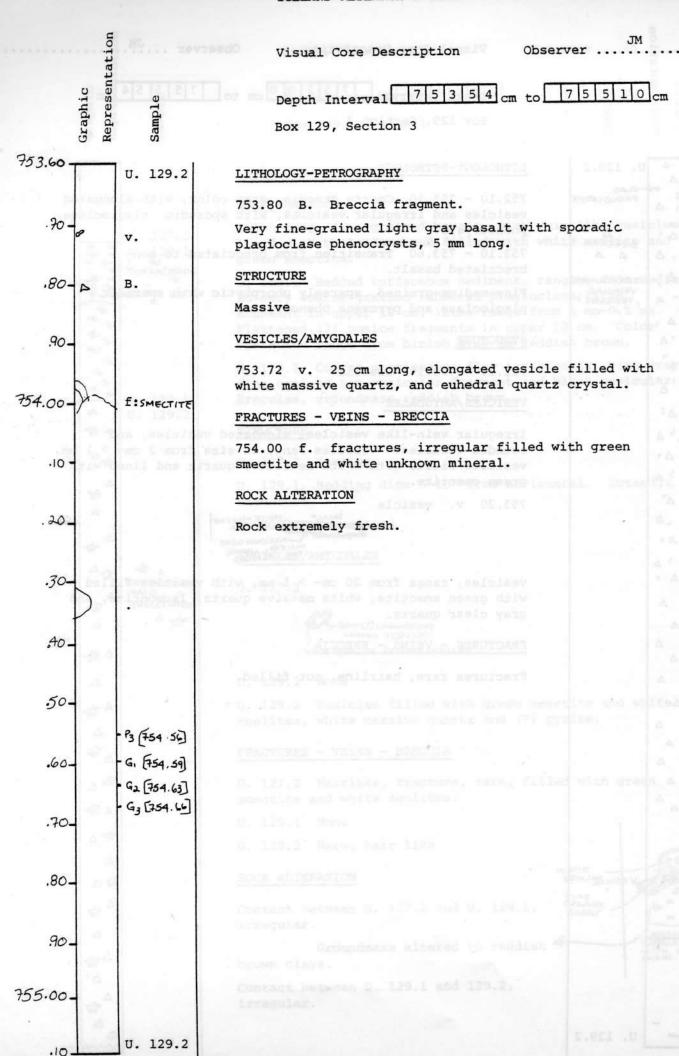
Fine-medium-grained, sparsely phorphytic with sporadic plagioclase and pyroxene phenocrysts.

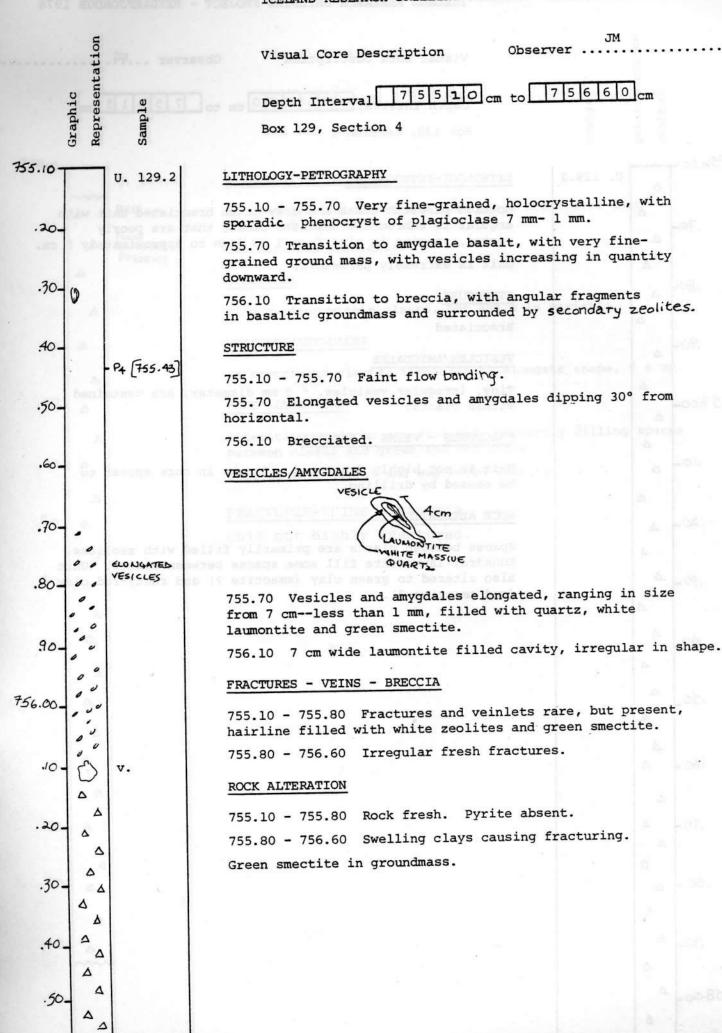

STRUCTURE

752.10 - 753.10 Breccia

VESICLES/AMYGDALES

Irregular vein-like vesicles, elongated vesicles, and rounded vesicles. Vesicles range in size from 2 cm- > 1 mm, vesicles filled with white zeolites, quartz and lined with green smectite.


753.20 v. vesicle



vesicles, range from 20 cm- > 1 mm, with vesicles filled with green smectite, white massive quartz, laumontite, and gray clear quartz.

FRACTURES - VEINS - BRECCIA

Fractures rare, hairline, not filled.

U. 129.2